Visual analytics for technology and innovation management An interaction approach for strategic decision making

The awareness of emerging trends is essential for strategic decision making because technological trends can affect a firm’s competitiveness and market position. The rise of artificial intelligence methods allows gathering new insights and may support these decision-making processes. However, it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications Jg. 81; H. 11; S. 14803 - 14830
Hauptverfasser: Nazemi, Kawa, Burkhardt, Dirk, Kock, Alexander
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.05.2022
Schlagworte:
ISSN:1380-7501, 1573-7721
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The awareness of emerging trends is essential for strategic decision making because technological trends can affect a firm’s competitiveness and market position. The rise of artificial intelligence methods allows gathering new insights and may support these decision-making processes. However, it is essential to keep the human in the loop of these complex analytical tasks, which, often lack an appropriate interaction design. Including special interactive designs for technology and innovation management is therefore essential for successfully analyzing emerging trends and using this information for strategic decision making. A combination of information visualization, trend mining and interaction design can support human users to explore, detect, and identify such trends. This paper enhances and extends a previously published first approach for integrating, enriching, mining, analyzing, identifying, and visualizing emerging trends for technology and innovation management. We introduce a novel interaction design by investigating the main ideas from technology and innovation management and enable a more appropriate interaction approach for technology foresight and innovation detection.
AbstractList The awareness of emerging trends is essential for strategic decision making because technological trends can affect a firm’s competitiveness and market position. The rise of artificial intelligence methods allows gathering new insights and may support these decision-making processes. However, it is essential to keep the human in the loop of these complex analytical tasks, which, often lack an appropriate interaction design. Including special interactive designs for technology and innovation management is therefore essential for successfully analyzing emerging trends and using this information for strategic decision making. A combination of information visualization, trend mining and interaction design can support human users to explore, detect, and identify such trends. This paper enhances and extends a previously published first approach for integrating, enriching, mining, analyzing, identifying, and visualizing emerging trends for technology and innovation management. We introduce a novel interaction design by investigating the main ideas from technology and innovation management and enable a more appropriate interaction approach for technology foresight and innovation detection.
Author Burkhardt, Dirk
Kock, Alexander
Nazemi, Kawa
Author_xml – sequence: 1
  givenname: Kawa
  orcidid: 0000-0002-2907-2740
  surname: Nazemi
  fullname: Nazemi, Kawa
  email: kawa.nazemi@h-da.de
  organization: Human-Computer Interaction and Visual Analytics, Darmstadt University of Applied Sciences
– sequence: 2
  givenname: Dirk
  orcidid: 0000-0002-6507-7899
  surname: Burkhardt
  fullname: Burkhardt, Dirk
  organization: Human-Computer Interaction and Visual Analytics, Darmstadt University of Applied Sciences
– sequence: 3
  givenname: Alexander
  orcidid: 0000-0003-2402-0340
  surname: Kock
  fullname: Kock, Alexander
  organization: Technische Universität Darmstadt, Technology and Innovation Management
BookMark eNp9kMtOQyEQQImpiW31B1zdH0AZHuWyNI2vpIkbdUsoQqW5BQPU5P692Lpy0dVMZubM5MwMTWKKDqFrIDdAiLwtAIRTTChgIEpSzM7QFIRkWEoKk5aznmApCFygWSlbQmAhKJ8i9R7K3gydiWYYa7Cl8yl31dnPmIa0GVvjowsxpm9TQ4rdrg1u3M7FeonOvRmKu_qLc_T2cP-6fMKrl8fn5d0KW6qgYs88VcQL4ZhwnLOF8FwuKGlF47hdU6V62a-5tI4YaZkE7qjnDNjaWlCGzRE97rU5lZKd11857EweNRD9K6-P8rrJ64O8Zg3q_0E21INBzSYMp1F2REu7Ezcu623a5_aecor6Ad6kcCQ
CitedBy_id crossref_primary_10_1177_14738716231212568
crossref_primary_10_3390_math13010091
crossref_primary_10_1080_08956308_2023_2186072
crossref_primary_10_3390_electronics12092019
Cites_doi 10.1007/978-3-319-14364-4_84
10.1109/ICMLA.2013.89
10.1109/IV51561.2020.00065
10.1145/1998076.1998160
10.1007/978-3-030-33723-0_23
10.1109/TVCG.2009.108
10.1016/j.techfore.2015.11.002
10.1109/VAST.2011.6102461
10.1109/TVCG.2010.194
10.1145/1529282.1529611
10.1007/BFb0094803
10.1145/1121949.1121979
10.1109/IV.2019.00041
10.1145/2809563.2809569
10.1016/j.techfore.2020.119966
10.1145/2089094.2089101
10.1145/1835804.1835815
10.1111/j.1540-5885.2011.00859.x
10.1109/CECandEEE.2008.112
10.1145/1081870.1081895
10.1109/BIGCOMP.2016.7425917
10.1109/VAST.2009.5333443
10.1145/1840784.1840789
10.1186/s40537-016-0039-2
10.1016/j.wpi.2017.04.003
10.1109/WISE.2002.1181645
10.1016/j.techfore.2017.12.013
10.1145/1014052.1014150
10.1145/2254556.2254701
10.1109/TVCG.2015.2467621
10.1109/2945.981848
10.1109/TKDE.2007.1040
10.1007/s11573-018-0898-4
10.1016/j.techfore.2020.120041
10.1109/VL.1996.545307
10.1109/TEM.2020.2989214
10.1007/978-3-319-30816-6
10.1016/j.techfore.2010.06.019
10.5465/annals.2016.0051
10.2200/s00174ed1v01y200901icr003
10.1016/j.wpi.2009.05.008
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID C6C
AAYXX
CITATION
DOI 10.1007/s11042-021-10972-3
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 14830
ExternalDocumentID 10_1007_s11042_021_10972_3
GrantInformation_xml – fundername: Hochschule Darmstadt University of Applied Sciences (3312)
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c291t-f3f290f55e35e44365f47620290ae4cb299878b47ce0a7c3714e2f4313bcc19a3
IEDL.DBID RSV
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652455300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Tue Nov 18 22:24:59 EST 2025
Sat Nov 29 06:20:11 EST 2025
Fri Feb 21 02:45:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Emerging trend identification
Information visualization
Technology management
Visual analytics
Interaction design
Innovation management
Multimedia interaction
Visual trend analytics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f3f290f55e35e44365f47620290ae4cb299878b47ce0a7c3714e2f4313bcc19a3
ORCID 0000-0002-6507-7899
0000-0002-2907-2740
0000-0003-2402-0340
OpenAccessLink https://link.springer.com/10.1007/s11042-021-10972-3
PageCount 28
ParticipantIDs crossref_primary_10_1007_s11042_021_10972_3
crossref_citationtrail_10_1007_s11042_021_10972_3
springer_journals_10_1007_s11042_021_10972_3
PublicationCentury 2000
PublicationDate 20220500
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2022
Publisher Springer US
Publisher_xml – name: Springer US
References Wallach HM, Mimno DM, McCallum A (2009) Rethinking lda: why priors matter. In: Bengio Y, Schuurmans D, Lafferty JD, Williams CKI, Culotta A (eds) Advances in neural information processing systems, vol 22. Curran Associates, Inc, pp 1973–1981. http://papers.nips.cc/paper/3854-rethinking-lda-why-priors-matter.pdf
CardSKMackinlayJDShneidermanBReadings in information visualization: using vision to think19991st edn.San MateoMorgan Kaufmann
Bertin J (1983) Semiology of graphics. University of Wisconsin Press
Feldman R, Dagan I (1995) Knowledge discovery in textual databases (kdt). In: Proceedings of the first international conference on knowledge discovery and data mining
Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. Journal of Machine Learning Research 3. http://www.jmlr.org/papers/v3/blei03a.html
Lent B, Agrawal R, Srikant R (1997) Discovering trends in text databases. In: Proceedings of KDD ’97
Sinan ErzurumluSPachamanovaDTopic modeling and technology forecasting for assessing the commercial viability of healthcare innovationsTechnol Forecast Soc Chang202015612004110.1016/j.techfore.2020.120041https://doi.org/10.1016/j.techfore.2020.120041
RohrbeckRBattistellaCHuizinghECorporate foresight: an emerging field with a rich traditionTechnol Forecast Soc Chang20151011910.1016/j.techfore.2015.11.002https://doi.org/10.1016/j.techfore.2015.11.002
Srikant R (1997) Mining sequential patterns. In: Proceedings of the eleventh international conference on data engineering
JeromeSBruner: the act of discoveryHarv Educ Rev1961312132
Mei Q, Zhai C (2005) Discovering evolutionary theme patterns from text: an exploration of temporal text mining. In: Proceedings of ACM SIGKDD
Nazemi K, Burkhardt D, Retz R, Kuijper A, Kohlhammer J (2014) Adaptive visualization of linked-data. In: Advances in visual computing. Springer, pp 872–883
MühlrothCGrottkeMA systematic literature review of mining weak signals and trends for corporate foresightJournal of Business Economics201888564368710.1007/s11573-018-0898-4https://doi.org/10.1007/s11573-018-0898-4
Nazemi K, Klepsch M, Burkhardt D, Kaupp L (2020) Comparison of full-text articles and theircorresponding abstracts for visual trend analytics. In: Proceedings of the 24rd international conference information visualisation. IEEE, IEEE. To appear
HanQHeimerlFCodina-FilbaJLohmannSWannerLErtlTVisual patent trend analysis for informed decision making in technology managementWorld Patent Inf201749344210.1016/j.wpi.2017.04.003https://doi.org/10.1016/j.wpi.2017.04.003
GordonAVRamicMRohrbeckRSpaniolMJ50 years of corporate and organizational foresight: looking back and going forwardTechnol Forecast Soc Chang202015411996610.1016/j.techfore.2020.119966https://doi.org/10.1016/j.techfore.2020.119966
RohrbeckRGemündenHGCorporate foresight: its three roles in enhancing the innovation capacity of a firmTechnol Forecast Soc Chang201178223124310.1016/j.techfore.2010.06.019https://doi.org/10.1016/j.techfore.2010.06.019
Glance NS, Hurst M, Tomokiyo T (2004) Blogpulse: automated trend discovery for weblogs. In: WWW 2004 WS on weblogging. ACM
KockAGemündenHGSalomoSSchultzCThe mixed blessings of technological innovativeness for the commercial success of new productsJ Prod Innov Manag201128s1284310.1111/j.1540-5885.2011.00859.xhttps://doi.org/10.1111/j.1540-5885.2011.00859.x
Bun KK, Ishizuka M (2002) Topic extraction from news archive using tf*pdf algorithm. In: Proceedings of the third international conference on web information systems engineering, 2002. WISE 2002, pp 73–82. https://doi.org/10.1109/WISE.2002.1181645
SchoemakerPJHTetlockPEBuilding a more intelligent enterpriseMIT Sloan Management Review Spring20172017582837
LiuSZhouMXPanSSongYQianWCaiWLianXTiara: interactive, topic-based visual text summarization and analysisACM Trans Intell Syst Technol20123225: 125: 28https://doi.org/10.1145/2089094.2089101
BoninoDCiaramellaACornoFReview of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informaticsWorld Patent Inf2010321303810.1016/j.wpi.2009.05.008https://doi.org/10.1016/j.wpi.2009.05.008
van HamFPererASearch, show context, expand on demand: supporting large graph exploration with degree-of-interestIEEE Trans Vis Comput Graph20091595369010.1109/TVCG.2009.108
White RW, Roth RA (2009) Exploratory search: beyond the query-response paradigm. 1947-945X 1. https://doi.org/10.2200/s00174ed1v01y200901icr003
Nazemi K, Retz R, Burkhardt D, Kuijper A, Kohlhammer J, Fellner DW (2015) Visual trend analysis with digital libraries. In: Proceedings of the 15th international conference on knowledge technologies and data-driven business - i-KNOW 2015. ACM Press. https://doi.org/10.1145/2809563.2809569
Yu Z, Johnson TR, Kavuluru R (2013) Phrase based topic modeling for semantic information processing in biomedicine. In: Proceedings of the international conference on machine learning and applications, vol 2013. International Conference on Machine Learning and Applications, pp 440–445. https://doi.org/10.1109/ICMLA.2013.89
Goorha S, Ungar L (2010) Discovery of significant emerging trends. In: Proceedings of the 16th ACM SIGKDD. https://doi.org/10.1145/1835804.1835815
EggersJPParkKFIncumbent adaptation to technological change: the past, present, and future of research on heterogeneous incumbent responseAcademy of Management Annals201812135738910.5465/annals.2016.0051https://doi.org/10.5465/annals.2016.0051
Joho H, Azzopardi LA, Vanderbauwhede W (2010) A survey of patent users: an analysis of tasks, behavior, search functionality and system requirements. In: Proceedings of the third symposium on information interaction in context, IIiX ’10. ACM, New York, pp 13–24. https://doi.org/10.1145/1840784.1840789
ChenK-YLuesukprasertLChouS-CTHot topic extraction based on timeline analysis and multidimensional sentence modelingIEEE Trans Knowl Data Eng20071981016102510.1109/TKDE.2007.1040https://doi.org/10.1109/TKDE.2007.1040
Viermetz M, Skubacz M, Ziegler CNZ, Seipel D (2008) Tracking topic evolution in news environments. In: 10th IEEE conference on e-commerce technology, pp 215–220. https://doi.org/10.1109/CECandEEE.2008.112
BloomBSTaxonomy of educational objectives1956New YorkDavid McKay Co. Inc
Kim Y, Tian Y, Jeong Y, Jihee R, Myaeng S-H, Shin SY, Ossowski S (2009) Automatic discovery of technology trends from patent text. In: Proceedings of the 2009 ACM symposium on applied computing (SAC), Honolulu, Hawaii, USA, March 9-12, 2009. ACM. https://doi.org/10.1145/1529282.1529611
Keim D, Kohlhammer J, Geoffrey E, Mansmann F (eds) (2010) Mastering the information age : solving problems with visual analytics. Eurographics Association, Goslar
Nguyen K-L, Shin B-J, Yoo SJ (2016) Hot topic detection and technology trend tracking for patents utilizing term frequency and proportional document frequency and semantic information. In: 2016 International conference on big data and smart computing (bigcomp), pp 223–230. https://doi.org/10.1109/BIGCOMP.2016.7425917
MarchioniniGExploratory search: from finding to understandingCommun ACM2006494414610.1145/1121949.1121979https://doi.org/10.1145/1121949.1121979
Zhai CX, Velivelli A, Yu B (2004) A cross-collection mixture model for comparative text mining. In: Proceedings of the tenth ACM SIGKDD, KDD ’04. ACM, New York, pp 743–748. https://doi.org/10.1145/1014052.1014150
Mühlroth C, Grottke M (2020) Artificial intelligence in innovation: how to spot emerging trends and technologies. IEEE Trans Eng Manag, pp 1–18. https://doi.org/10.1109/TEM.2020.2989214
Nazemi K, Burkhardt D (2019) A visual analytics approach for analyzing technological trends in technology and innovation management. In: Bebis G, Boyle R, Parvin B, Koracin D, Ushizima D, Chai S, Sueda S, Lin X, Lu A, Thalmann D, Wang C, Xu P (eds) Advances in visual computing, lecture notes in computer science, vol 11845. Springer International Publishing, Cham, pp 283–294. https://doi.org/10.1007/978-3-030-33723-0_23
Feldman R, Aumann Y, Zilberstein A, Ben-Yehuda Y (1998) Trend graphs: visualizing the evolution of concept relationships in large document collections. In: Żytkow JM, Quafafou M (eds) Principles of data mining and knowledge discovery. Springer, Berlin, pp 38–46
HurtadoJLAgarwalAZhuATopic discovery and future trend forecasting for textsJournal of Big Data201631710.1186/s40537-016-0039-2https://doi.org/10.1186/s40537-016-0039-2
Collins C, Viegas FB, Wattenberg M (2009) Parallel tag clouds to explore and analyze faceted text corpora. In: VAST 2009. https://doi.org/10.1109/VAST.2009.5333443
Agrawal R, Psaila G, Wimmers EL, Zaït M (1995) Querying shapes of histories. In: Proceedings of 21th international conference on very large data bases (VLDB’95). Morgan Kaufmann
Montes-y-GomezMGelbukhALopez-LopezAMining the news: trends, associations, and deviationsComputacion y Sistemas2001511424
RohrbeckRKumMECorporate foresight and its impact on firm performance: a longitudinal analysisTechnol Forecast Soc Chang201812910511610.1016/j.techfore.2017.12.013https://doi.org/10.1016/j.techfore.2017.12.013
Dou W, Wang X, Chang R, Ribarsky W (2011) Parallel topics: a probabilistic approach to exploring document collections. In: VAST 2011. https://doi.org/10.1109/VAST.2011.6102461
Nazemi K, Burkhard D (2019) Visual analytics for analyzing technological trends from text. In: 2019 23rd international conference information visualisation (IV). IEEE, pp 191–200. https://doi.org/10.1109/IV.2019.00041
Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: VL, pp 336–343
Lohmann S, Burch M, Schmauder H, Weiskopf D (2012) Visual analysis of microblog content using time-varying co-occurrence highlighting in tag clouds. In: Proceedings of the international working conference on advanced visual interfaces, AVI ’12. 10.1145/2254556.2254701. ACM, New York, pp 753–756
Lee B, Riche NH, Karlson AK, Carpendale S (2010) Sparkclouds: visualizing trends in tag clouds. IEEE TVCG 16. https://doi.org/10.1109/TVCG.2010.194
Noh Y, Hagedorn K, Newm
S Havre (10972_CR18) 2002; 8
R Rohrbeck (10972_CR43) 2015; 101
PJH Schoemaker (10972_CR46) 2017; 2017
A Kock (10972_CR25) 2011; 28
10972_CR29
10972_CR35
10972_CR34
10972_CR37
10972_CR36
S Liu (10972_CR28) 2012; 3
10972_CR39
10972_CR38
AV Gordon (10972_CR16) 2020; 154
D Bonino (10972_CR5) 2010; 32
10972_CR9
10972_CR31
JL Hurtado (10972_CR20) 2016; 3
R Rohrbeck (10972_CR45) 2018; 129
F van Ham (10972_CR50) 2009; 15
C Mühlroth (10972_CR33) 2018; 88
BS Bloom (10972_CR4) 1956
10972_CR22
10972_CR24
10972_CR23
10972_CR26
10972_CR27
JP Eggers (10972_CR11) 2018; 12
SK Card (10972_CR7) 1999
F Heimerl (10972_CR19) 2016; 22
S Jerome (10972_CR21) 1961; 31
M Montes-y-Gomez (10972_CR32) 2001; 5
10972_CR55
10972_CR10
10972_CR54
10972_CR13
10972_CR12
10972_CR15
10972_CR14
10972_CR51
10972_CR53
10972_CR52
10972_CR6
10972_CR1
R Rohrbeck (10972_CR44) 2011; 78
10972_CR2
10972_CR3
Q Han (10972_CR17) 2017; 49
G Marchionini (10972_CR30) 2006; 49
K-Y Chen (10972_CR8) 2007; 19
S Sinan Erzurumlu (10972_CR48) 2020; 156
10972_CR47
10972_CR49
10972_CR40
10972_CR42
10972_CR41
References_xml – reference: Collins C, Viegas FB, Wattenberg M (2009) Parallel tag clouds to explore and analyze faceted text corpora. In: VAST 2009. https://doi.org/10.1109/VAST.2009.5333443
– reference: Bun KK, Ishizuka M (2002) Topic extraction from news archive using tf*pdf algorithm. In: Proceedings of the third international conference on web information systems engineering, 2002. WISE 2002, pp 73–82. https://doi.org/10.1109/WISE.2002.1181645
– reference: EggersJPParkKFIncumbent adaptation to technological change: the past, present, and future of research on heterogeneous incumbent responseAcademy of Management Annals201812135738910.5465/annals.2016.0051https://doi.org/10.5465/annals.2016.0051
– reference: Lent B, Agrawal R, Srikant R (1997) Discovering trends in text databases. In: Proceedings of KDD ’97
– reference: Feldman R, Aumann Y, Zilberstein A, Ben-Yehuda Y (1998) Trend graphs: visualizing the evolution of concept relationships in large document collections. In: Żytkow JM, Quafafou M (eds) Principles of data mining and knowledge discovery. Springer, Berlin, pp 38–46
– reference: BloomBSTaxonomy of educational objectives1956New YorkDavid McKay Co. Inc
– reference: Kim Y, Tian Y, Jeong Y, Jihee R, Myaeng S-H, Shin SY, Ossowski S (2009) Automatic discovery of technology trends from patent text. In: Proceedings of the 2009 ACM symposium on applied computing (SAC), Honolulu, Hawaii, USA, March 9-12, 2009. ACM. https://doi.org/10.1145/1529282.1529611
– reference: LiuSZhouMXPanSSongYQianWCaiWLianXTiara: interactive, topic-based visual text summarization and analysisACM Trans Intell Syst Technol20123225: 125: 28https://doi.org/10.1145/2089094.2089101
– reference: Viermetz M, Skubacz M, Ziegler CNZ, Seipel D (2008) Tracking topic evolution in news environments. In: 10th IEEE conference on e-commerce technology, pp 215–220. https://doi.org/10.1109/CECandEEE.2008.112
– reference: Dou W, Wang X, Chang R, Ribarsky W (2011) Parallel topics: a probabilistic approach to exploring document collections. In: VAST 2011. https://doi.org/10.1109/VAST.2011.6102461
– reference: JeromeSBruner: the act of discoveryHarv Educ Rev1961312132
– reference: Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. Journal of Machine Learning Research 3. http://www.jmlr.org/papers/v3/blei03a.html
– reference: Lee B, Riche NH, Karlson AK, Carpendale S (2010) Sparkclouds: visualizing trends in tag clouds. IEEE TVCG 16. https://doi.org/10.1109/TVCG.2010.194
– reference: Mei Q, Zhai C (2005) Discovering evolutionary theme patterns from text: an exploration of temporal text mining. In: Proceedings of ACM SIGKDD
– reference: GordonAVRamicMRohrbeckRSpaniolMJ50 years of corporate and organizational foresight: looking back and going forwardTechnol Forecast Soc Chang202015411996610.1016/j.techfore.2020.119966https://doi.org/10.1016/j.techfore.2020.119966
– reference: RohrbeckRBattistellaCHuizinghECorporate foresight: an emerging field with a rich traditionTechnol Forecast Soc Chang20151011910.1016/j.techfore.2015.11.002https://doi.org/10.1016/j.techfore.2015.11.002
– reference: Lohmann S, Burch M, Schmauder H, Weiskopf D (2012) Visual analysis of microblog content using time-varying co-occurrence highlighting in tag clouds. In: Proceedings of the international working conference on advanced visual interfaces, AVI ’12. 10.1145/2254556.2254701. ACM, New York, pp 753–756
– reference: HeimerlFHanQKochSErtlTciterivers: visual analytics of citation patternsIEEE TVCG2016221190199https://doi.org/10.1109/TVCG.2015.2467621
– reference: Nguyen K-L, Shin B-J, Yoo SJ (2016) Hot topic detection and technology trend tracking for patents utilizing term frequency and proportional document frequency and semantic information. In: 2016 International conference on big data and smart computing (bigcomp), pp 223–230. https://doi.org/10.1109/BIGCOMP.2016.7425917
– reference: Wallach HM, Mimno DM, McCallum A (2009) Rethinking lda: why priors matter. In: Bengio Y, Schuurmans D, Lafferty JD, Williams CKI, Culotta A (eds) Advances in neural information processing systems, vol 22. Curran Associates, Inc, pp 1973–1981. http://papers.nips.cc/paper/3854-rethinking-lda-why-priors-matter.pdf
– reference: Nazemi K, Retz R, Burkhardt D, Kuijper A, Kohlhammer J, Fellner DW (2015) Visual trend analysis with digital libraries. In: Proceedings of the 15th international conference on knowledge technologies and data-driven business - i-KNOW 2015. ACM Press. https://doi.org/10.1145/2809563.2809569
– reference: Nazemi K, Burkhard D (2019) Visual analytics for analyzing technological trends from text. In: 2019 23rd international conference information visualisation (IV). IEEE, pp 191–200. https://doi.org/10.1109/IV.2019.00041
– reference: SchoemakerPJHTetlockPEBuilding a more intelligent enterpriseMIT Sloan Management Review Spring20172017582837
– reference: MarchioniniGExploratory search: from finding to understandingCommun ACM2006494414610.1145/1121949.1121979https://doi.org/10.1145/1121949.1121979
– reference: Glance NS, Hurst M, Tomokiyo T (2004) Blogpulse: automated trend discovery for weblogs. In: WWW 2004 WS on weblogging. ACM
– reference: Sinan ErzurumluSPachamanovaDTopic modeling and technology forecasting for assessing the commercial viability of healthcare innovationsTechnol Forecast Soc Chang202015612004110.1016/j.techfore.2020.120041https://doi.org/10.1016/j.techfore.2020.120041
– reference: BoninoDCiaramellaACornoFReview of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informaticsWorld Patent Inf2010321303810.1016/j.wpi.2009.05.008https://doi.org/10.1016/j.wpi.2009.05.008
– reference: Noh Y, Hagedorn K, Newman D (2011) Are learned topics more useful than subject headings. In: Proceedings of the 11th ACM/IEEE JCDL
– reference: Mühlroth C, Grottke M (2020) Artificial intelligence in innovation: how to spot emerging trends and technologies. IEEE Trans Eng Manag, pp 1–18. https://doi.org/10.1109/TEM.2020.2989214
– reference: RohrbeckRGemündenHGCorporate foresight: its three roles in enhancing the innovation capacity of a firmTechnol Forecast Soc Chang201178223124310.1016/j.techfore.2010.06.019https://doi.org/10.1016/j.techfore.2010.06.019
– reference: KockAGemündenHGSalomoSSchultzCThe mixed blessings of technological innovativeness for the commercial success of new productsJ Prod Innov Manag201128s1284310.1111/j.1540-5885.2011.00859.xhttps://doi.org/10.1111/j.1540-5885.2011.00859.x
– reference: Joho H, Azzopardi LA, Vanderbauwhede W (2010) A survey of patent users: an analysis of tasks, behavior, search functionality and system requirements. In: Proceedings of the third symposium on information interaction in context, IIiX ’10. ACM, New York, pp 13–24. https://doi.org/10.1145/1840784.1840789
– reference: Nazemi K, Klepsch M, Burkhardt D, Kaupp L (2020) Comparison of full-text articles and theircorresponding abstracts for visual trend analytics. In: Proceedings of the 24rd international conference information visualisation. IEEE, IEEE. To appear
– reference: HurtadoJLAgarwalAZhuATopic discovery and future trend forecasting for textsJournal of Big Data201631710.1186/s40537-016-0039-2https://doi.org/10.1186/s40537-016-0039-2
– reference: Montes-y-GomezMGelbukhALopez-LopezAMining the news: trends, associations, and deviationsComputacion y Sistemas2001511424
– reference: HanQHeimerlFCodina-FilbaJLohmannSWannerLErtlTVisual patent trend analysis for informed decision making in technology managementWorld Patent Inf201749344210.1016/j.wpi.2017.04.003https://doi.org/10.1016/j.wpi.2017.04.003
– reference: Agrawal R, Psaila G, Wimmers EL, Zaït M (1995) Querying shapes of histories. In: Proceedings of 21th international conference on very large data bases (VLDB’95). Morgan Kaufmann
– reference: HavreSHetzlerEWhitneyPNowellLThe meriver: visualizing thematic changes in large document collectionsIEEE TVCG200281920https://doi.org/10.1109/2945.981848
– reference: Nazemi K, Burkhardt D (2019) A visual analytics approach for analyzing technological trends in technology and innovation management. In: Bebis G, Boyle R, Parvin B, Koracin D, Ushizima D, Chai S, Sueda S, Lin X, Lu A, Thalmann D, Wang C, Xu P (eds) Advances in visual computing, lecture notes in computer science, vol 11845. Springer International Publishing, Cham, pp 283–294. https://doi.org/10.1007/978-3-030-33723-0_23
– reference: van HamFPererASearch, show context, expand on demand: supporting large graph exploration with degree-of-interestIEEE Trans Vis Comput Graph20091595369010.1109/TVCG.2009.108
– reference: Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: VL, pp 336–343
– reference: Feldman R, Dagan I (1995) Knowledge discovery in textual databases (kdt). In: Proceedings of the first international conference on knowledge discovery and data mining
– reference: Nazemi K, Burkhardt D, Retz R, Kuijper A, Kohlhammer J (2014) Adaptive visualization of linked-data. In: Advances in visual computing. Springer, pp 872–883
– reference: Srikant R (1997) Mining sequential patterns. In: Proceedings of the eleventh international conference on data engineering
– reference: Goorha S, Ungar L (2010) Discovery of significant emerging trends. In: Proceedings of the 16th ACM SIGKDD. https://doi.org/10.1145/1835804.1835815
– reference: Nazemi K (2016) Adaptive semantics visualization. Studies in Computational Intelligence 646. Springer International Publishing, Studies in Computational Intelligence 646. https://doi.org/10.1007/978-3-319-30816-6
– reference: Bertin J (1983) Semiology of graphics. University of Wisconsin Press
– reference: Zhai CX, Velivelli A, Yu B (2004) A cross-collection mixture model for comparative text mining. In: Proceedings of the tenth ACM SIGKDD, KDD ’04. ACM, New York, pp 743–748. https://doi.org/10.1145/1014052.1014150
– reference: Keim D, Kohlhammer J, Geoffrey E, Mansmann F (eds) (2010) Mastering the information age : solving problems with visual analytics. Eurographics Association, Goslar
– reference: Yu Z, Johnson TR, Kavuluru R (2013) Phrase based topic modeling for semantic information processing in biomedicine. In: Proceedings of the international conference on machine learning and applications, vol 2013. International Conference on Machine Learning and Applications, pp 440–445. https://doi.org/10.1109/ICMLA.2013.89
– reference: RohrbeckRKumMECorporate foresight and its impact on firm performance: a longitudinal analysisTechnol Forecast Soc Chang201812910511610.1016/j.techfore.2017.12.013https://doi.org/10.1016/j.techfore.2017.12.013
– reference: MühlrothCGrottkeMA systematic literature review of mining weak signals and trends for corporate foresightJournal of Business Economics201888564368710.1007/s11573-018-0898-4https://doi.org/10.1007/s11573-018-0898-4
– reference: CardSKMackinlayJDShneidermanBReadings in information visualization: using vision to think19991st edn.San MateoMorgan Kaufmann
– reference: ChenK-YLuesukprasertLChouS-CTHot topic extraction based on timeline analysis and multidimensional sentence modelingIEEE Trans Knowl Data Eng20071981016102510.1109/TKDE.2007.1040https://doi.org/10.1109/TKDE.2007.1040
– reference: White RW, Roth RA (2009) Exploratory search: beyond the query-response paradigm. 1947-945X 1. https://doi.org/10.2200/s00174ed1v01y200901icr003
– ident: 10972_CR38
  doi: 10.1007/978-3-319-14364-4_84
– ident: 10972_CR54
  doi: 10.1109/ICMLA.2013.89
– ident: 10972_CR39
  doi: 10.1109/IV51561.2020.00065
– ident: 10972_CR42
  doi: 10.1145/1998076.1998160
– ident: 10972_CR37
  doi: 10.1007/978-3-030-33723-0_23
– volume: 2017
  start-page: 28
  issue: 58
  year: 2017
  ident: 10972_CR46
  publication-title: MIT Sloan Management Review Spring
– volume: 15
  start-page: 953
  year: 2009
  ident: 10972_CR50
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2009.108
– volume: 101
  start-page: 1
  year: 2015
  ident: 10972_CR43
  publication-title: Technol Forecast Soc Chang
  doi: 10.1016/j.techfore.2015.11.002
– ident: 10972_CR10
  doi: 10.1109/VAST.2011.6102461
– ident: 10972_CR26
  doi: 10.1109/TVCG.2010.194
– ident: 10972_CR24
  doi: 10.1145/1529282.1529611
– volume-title: Taxonomy of educational objectives
  year: 1956
  ident: 10972_CR4
– ident: 10972_CR12
  doi: 10.1007/BFb0094803
– volume: 5
  start-page: 14
  issue: 1
  year: 2001
  ident: 10972_CR32
  publication-title: Computacion y Sistemas
– volume: 49
  start-page: 41
  issue: 4
  year: 2006
  ident: 10972_CR30
  publication-title: Commun ACM
  doi: 10.1145/1121949.1121979
– ident: 10972_CR52
– ident: 10972_CR36
  doi: 10.1109/IV.2019.00041
– ident: 10972_CR14
– ident: 10972_CR40
  doi: 10.1145/2809563.2809569
– volume: 154
  start-page: 119966
  year: 2020
  ident: 10972_CR16
  publication-title: Technol Forecast Soc Chang
  doi: 10.1016/j.techfore.2020.119966
– volume: 3
  start-page: 25: 1
  issue: 2
  year: 2012
  ident: 10972_CR28
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/2089094.2089101
– ident: 10972_CR15
  doi: 10.1145/1835804.1835815
– volume: 28
  start-page: 28
  issue: s1
  year: 2011
  ident: 10972_CR25
  publication-title: J Prod Innov Manag
  doi: 10.1111/j.1540-5885.2011.00859.x
– ident: 10972_CR3
– ident: 10972_CR51
  doi: 10.1109/CECandEEE.2008.112
– ident: 10972_CR31
  doi: 10.1145/1081870.1081895
– ident: 10972_CR41
  doi: 10.1109/BIGCOMP.2016.7425917
– volume-title: Readings in information visualization: using vision to think
  year: 1999
  ident: 10972_CR7
– ident: 10972_CR9
  doi: 10.1109/VAST.2009.5333443
– ident: 10972_CR22
  doi: 10.1145/1840784.1840789
– volume: 3
  start-page: 7
  issue: 1
  year: 2016
  ident: 10972_CR20
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-016-0039-2
– volume: 49
  start-page: 34
  year: 2017
  ident: 10972_CR17
  publication-title: World Patent Inf
  doi: 10.1016/j.wpi.2017.04.003
– ident: 10972_CR6
  doi: 10.1109/WISE.2002.1181645
– volume: 129
  start-page: 105
  year: 2018
  ident: 10972_CR45
  publication-title: Technol Forecast Soc Chang
  doi: 10.1016/j.techfore.2017.12.013
– ident: 10972_CR13
– ident: 10972_CR49
– ident: 10972_CR55
  doi: 10.1145/1014052.1014150
– ident: 10972_CR29
  doi: 10.1145/2254556.2254701
– ident: 10972_CR2
– volume: 22
  start-page: 190
  issue: 1
  year: 2016
  ident: 10972_CR19
  publication-title: IEEE TVCG
  doi: 10.1109/TVCG.2015.2467621
– volume: 8
  start-page: 9
  issue: 1
  year: 2002
  ident: 10972_CR18
  publication-title: IEEE TVCG
  doi: 10.1109/2945.981848
– volume: 19
  start-page: 1016
  issue: 8
  year: 2007
  ident: 10972_CR8
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2007.1040
– volume: 88
  start-page: 643
  issue: 5
  year: 2018
  ident: 10972_CR33
  publication-title: Journal of Business Economics
  doi: 10.1007/s11573-018-0898-4
– ident: 10972_CR27
– volume: 156
  start-page: 120041
  year: 2020
  ident: 10972_CR48
  publication-title: Technol Forecast Soc Chang
  doi: 10.1016/j.techfore.2020.120041
– ident: 10972_CR47
  doi: 10.1109/VL.1996.545307
– volume: 31
  start-page: 21
  year: 1961
  ident: 10972_CR21
  publication-title: Harv Educ Rev
– ident: 10972_CR1
– ident: 10972_CR34
  doi: 10.1109/TEM.2020.2989214
– ident: 10972_CR35
  doi: 10.1007/978-3-319-30816-6
– volume: 78
  start-page: 231
  issue: 2
  year: 2011
  ident: 10972_CR44
  publication-title: Technol Forecast Soc Chang
  doi: 10.1016/j.techfore.2010.06.019
– volume: 12
  start-page: 357
  issue: 1
  year: 2018
  ident: 10972_CR11
  publication-title: Academy of Management Annals
  doi: 10.5465/annals.2016.0051
– ident: 10972_CR53
  doi: 10.2200/s00174ed1v01y200901icr003
– volume: 32
  start-page: 30
  issue: 1
  year: 2010
  ident: 10972_CR5
  publication-title: World Patent Inf
  doi: 10.1016/j.wpi.2009.05.008
– ident: 10972_CR23
SSID ssj0016524
Score 2.3822799
Snippet The awareness of emerging trends is essential for strategic decision making because technological trends can affect a firm’s competitiveness and market...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 14803
SubjectTerms 1198: Advances in Multimedia Interaction and Visualization
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Multimedia Information Systems
Special Purpose and Application-Based Systems
Subtitle An interaction approach for strategic decision making
Title Visual analytics for technology and innovation management
URI https://link.springer.com/article/10.1007/s11042-021-10972-3
Volume 81
WOSCitedRecordID wos000652455300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: M0C
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: P5Z
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: K7-
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 7WY
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: M2O
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZg4wAHBgPEeEw5cINIbZK-joA2cUDTxGParUqzRJoEA60dvx-nSzsmoUlwbZOochJ_dm1_BrhSTCiJOEaZ9EN0UEJNE8EV1dJEsfQTacpkzNFjNBjE43EydEVheZXtXoUkS029KnbzbSmJTSmwUVNG-TY0A8s2Y33051EdOwgD18o29ijioe9KZX5fYx2O1mOhJcT0W__7uAPYdyYluV2egUPY0rM2tKp2DcTd3jbs_eAePIJkNM0XOE1aVhLL1UzQfCVF_acdX0zItO6ZSt7rPJljeO33Xu4fqOujQBVL_IIabljimSDQPNBC8DAwAnWghw-lFipDRIqjOBOR0p6MlOXw08ygZcEzpXC7-Ak0Zh8zfQpEasVQLRmDwC8yqdBbyybKSMY1ujYh64BfiTNVjmTc9rp4S1f0yFZSKUqqDH6zlHfgup7zuaTY2Dj6ptqB1F23fMPws78NP4ddZusbyozGC2gU84W-hB31VUzzeRead73B8KlbnrdvxiXMFg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4P_vgmwbaJP16FHFMnENwjr2VNEugoFPWzr_fS5d2DmSgr20SyiW5313v7ncAV5JyKRDHCBVegA5KoEjMmSRK6DASXix0mYw57IX9fjQaxc-2KCyvst2rkGSpqRfFbp4pJTEpBSZqSglbhw1u2uwYH_1lWMcOAt-2so1cgnjo2VKZ39dYhqPlWGgJMZ3m_z5uD3atSenczs_APqypSQuaVbsGx97eFuz84B48gHiY5TOcJgwrieFqdtB8dYr6Tzu-GDtZ3TPVea_zZA7htXM_uOsS20eBSBp7BdFM09jVvq-Yrzhnga856kAXHwrFZYqIFIVRykOpXBFKw-GnqEbLgqVS4naxI2hMPibqGByhJEW1pDUCP0-FRG8tHUstKFPo2gS0DV4lzkRaknHT6-ItWdAjG0klKKky-E0T1obres7nnGJj5eibagcSe93yFcNP_jb8Era6g6de0nvoP57CNjW1DmV24xk0iulMncOm_CqyfHpRnrlv87PNYA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWszxy86dJkd_M6iloUSyk-Sm9hs92FgsbSpP5-Z9MkbUEK4jWZXcLsY2Yy830DcCUplwLtGKHC8TBA8RQJOZNECe0HwgmFzosx-x2_2w0Gg7C3gOLPq93LlOQM02BYmpKsNR7q1hz45hhYiSkvMBlUStg6bHCMZExR18trv8ojeG7R1jawCdpGp4DN_D7Hsmlazovm5qZd__-H7sFu4Wpat7O9sQ9rKmlAvWzjYBWnugE7C5yEBxD2R-kUhwnDVmI4nC10a62s-gOPL4bWqOqlan1W9TOH8N5-eLt7JEV_BSJp6GREM01DW7uuYq7inHmu5ng32vhQKC5jtFSBH8Tcl8oWvjTcfopq9DhYLCUuIzuCWvKVqGOwhJIUryut0SHgsZAYxcVDqQVlCkMejzbBKVUbyYJ83PTA-IjmtMlGUxFqKk-K04g14boaM55Rb6yUvilXIyqOYbpC_ORv4pew1btvR52n7vMpbFMDgciLHs-glk2m6hw25Xc2SicX-fb7AZ7M1kQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+analytics+for+technology+and+innovation+management&rft.jtitle=Multimedia+tools+and+applications&rft.au=Nazemi%2C+Kawa&rft.au=Burkhardt%2C+Dirk&rft.au=Kock%2C+Alexander&rft.date=2022-05-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=11&rft.spage=14803&rft.epage=14830&rft_id=info:doi/10.1007%2Fs11042-021-10972-3&rft.externalDocID=10_1007_s11042_021_10972_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon