Visual analytics for technology and innovation management An interaction approach for strategic decision making
The awareness of emerging trends is essential for strategic decision making because technological trends can affect a firm’s competitiveness and market position. The rise of artificial intelligence methods allows gathering new insights and may support these decision-making processes. However, it is...
Gespeichert in:
| Veröffentlicht in: | Multimedia tools and applications Jg. 81; H. 11; S. 14803 - 14830 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.05.2022
|
| Schlagworte: | |
| ISSN: | 1380-7501, 1573-7721 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The awareness of emerging trends is essential for strategic decision making because technological trends can affect a firm’s competitiveness and market position. The rise of artificial intelligence methods allows gathering new insights and may support these decision-making processes. However, it is essential to keep the human in the loop of these complex analytical tasks, which, often lack an appropriate interaction design. Including special interactive designs for technology and innovation management is therefore essential for successfully analyzing emerging trends and using this information for strategic decision making. A combination of information visualization, trend mining and interaction design can support human users to explore, detect, and identify such trends. This paper enhances and extends a previously published first approach for integrating, enriching, mining, analyzing, identifying, and visualizing emerging trends for technology and innovation management. We introduce a novel interaction design by investigating the main ideas from technology and innovation management and enable a more appropriate interaction approach for technology foresight and innovation detection. |
|---|---|
| AbstractList | The awareness of emerging trends is essential for strategic decision making because technological trends can affect a firm’s competitiveness and market position. The rise of artificial intelligence methods allows gathering new insights and may support these decision-making processes. However, it is essential to keep the human in the loop of these complex analytical tasks, which, often lack an appropriate interaction design. Including special interactive designs for technology and innovation management is therefore essential for successfully analyzing emerging trends and using this information for strategic decision making. A combination of information visualization, trend mining and interaction design can support human users to explore, detect, and identify such trends. This paper enhances and extends a previously published first approach for integrating, enriching, mining, analyzing, identifying, and visualizing emerging trends for technology and innovation management. We introduce a novel interaction design by investigating the main ideas from technology and innovation management and enable a more appropriate interaction approach for technology foresight and innovation detection. |
| Author | Burkhardt, Dirk Kock, Alexander Nazemi, Kawa |
| Author_xml | – sequence: 1 givenname: Kawa orcidid: 0000-0002-2907-2740 surname: Nazemi fullname: Nazemi, Kawa email: kawa.nazemi@h-da.de organization: Human-Computer Interaction and Visual Analytics, Darmstadt University of Applied Sciences – sequence: 2 givenname: Dirk orcidid: 0000-0002-6507-7899 surname: Burkhardt fullname: Burkhardt, Dirk organization: Human-Computer Interaction and Visual Analytics, Darmstadt University of Applied Sciences – sequence: 3 givenname: Alexander orcidid: 0000-0003-2402-0340 surname: Kock fullname: Kock, Alexander organization: Technische Universität Darmstadt, Technology and Innovation Management |
| BookMark | eNp9kMtOQyEQQImpiW31B1zdH0AZHuWyNI2vpIkbdUsoQqW5BQPU5P692Lpy0dVMZubM5MwMTWKKDqFrIDdAiLwtAIRTTChgIEpSzM7QFIRkWEoKk5aznmApCFygWSlbQmAhKJ8i9R7K3gydiWYYa7Cl8yl31dnPmIa0GVvjowsxpm9TQ4rdrg1u3M7FeonOvRmKu_qLc_T2cP-6fMKrl8fn5d0KW6qgYs88VcQL4ZhwnLOF8FwuKGlF47hdU6V62a-5tI4YaZkE7qjnDNjaWlCGzRE97rU5lZKd11857EweNRD9K6-P8rrJ64O8Zg3q_0E21INBzSYMp1F2REu7Ezcu623a5_aecor6Ad6kcCQ |
| CitedBy_id | crossref_primary_10_1177_14738716231212568 crossref_primary_10_3390_math13010091 crossref_primary_10_1080_08956308_2023_2186072 crossref_primary_10_3390_electronics12092019 |
| Cites_doi | 10.1007/978-3-319-14364-4_84 10.1109/ICMLA.2013.89 10.1109/IV51561.2020.00065 10.1145/1998076.1998160 10.1007/978-3-030-33723-0_23 10.1109/TVCG.2009.108 10.1016/j.techfore.2015.11.002 10.1109/VAST.2011.6102461 10.1109/TVCG.2010.194 10.1145/1529282.1529611 10.1007/BFb0094803 10.1145/1121949.1121979 10.1109/IV.2019.00041 10.1145/2809563.2809569 10.1016/j.techfore.2020.119966 10.1145/2089094.2089101 10.1145/1835804.1835815 10.1111/j.1540-5885.2011.00859.x 10.1109/CECandEEE.2008.112 10.1145/1081870.1081895 10.1109/BIGCOMP.2016.7425917 10.1109/VAST.2009.5333443 10.1145/1840784.1840789 10.1186/s40537-016-0039-2 10.1016/j.wpi.2017.04.003 10.1109/WISE.2002.1181645 10.1016/j.techfore.2017.12.013 10.1145/1014052.1014150 10.1145/2254556.2254701 10.1109/TVCG.2015.2467621 10.1109/2945.981848 10.1109/TKDE.2007.1040 10.1007/s11573-018-0898-4 10.1016/j.techfore.2020.120041 10.1109/VL.1996.545307 10.1109/TEM.2020.2989214 10.1007/978-3-319-30816-6 10.1016/j.techfore.2010.06.019 10.5465/annals.2016.0051 10.2200/s00174ed1v01y200901icr003 10.1016/j.wpi.2009.05.008 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 |
| Copyright_xml | – notice: The Author(s) 2021 |
| DBID | C6C AAYXX CITATION |
| DOI | 10.1007/s11042-021-10972-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 14830 |
| ExternalDocumentID | 10_1007_s11042_021_10972_3 |
| GrantInformation_xml | – fundername: Hochschule Darmstadt University of Applied Sciences (3312) |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c291t-f3f290f55e35e44365f47620290ae4cb299878b47ce0a7c3714e2f4313bcc19a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652455300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Tue Nov 18 22:24:59 EST 2025 Sat Nov 29 06:20:11 EST 2025 Fri Feb 21 02:45:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Emerging trend identification Information visualization Technology management Visual analytics Interaction design Innovation management Multimedia interaction Visual trend analytics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-f3f290f55e35e44365f47620290ae4cb299878b47ce0a7c3714e2f4313bcc19a3 |
| ORCID | 0000-0002-6507-7899 0000-0002-2907-2740 0000-0003-2402-0340 |
| OpenAccessLink | https://link.springer.com/10.1007/s11042-021-10972-3 |
| PageCount | 28 |
| ParticipantIDs | crossref_primary_10_1007_s11042_021_10972_3 crossref_citationtrail_10_1007_s11042_021_10972_3 springer_journals_10_1007_s11042_021_10972_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20220500 2022-05-00 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 5 year: 2022 text: 20220500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2022 |
| Publisher | Springer US |
| Publisher_xml | – name: Springer US |
| References | Wallach HM, Mimno DM, McCallum A (2009) Rethinking lda: why priors matter. In: Bengio Y, Schuurmans D, Lafferty JD, Williams CKI, Culotta A (eds) Advances in neural information processing systems, vol 22. Curran Associates, Inc, pp 1973–1981. http://papers.nips.cc/paper/3854-rethinking-lda-why-priors-matter.pdf CardSKMackinlayJDShneidermanBReadings in information visualization: using vision to think19991st edn.San MateoMorgan Kaufmann Bertin J (1983) Semiology of graphics. University of Wisconsin Press Feldman R, Dagan I (1995) Knowledge discovery in textual databases (kdt). In: Proceedings of the first international conference on knowledge discovery and data mining Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. Journal of Machine Learning Research 3. http://www.jmlr.org/papers/v3/blei03a.html Lent B, Agrawal R, Srikant R (1997) Discovering trends in text databases. In: Proceedings of KDD ’97 Sinan ErzurumluSPachamanovaDTopic modeling and technology forecasting for assessing the commercial viability of healthcare innovationsTechnol Forecast Soc Chang202015612004110.1016/j.techfore.2020.120041https://doi.org/10.1016/j.techfore.2020.120041 RohrbeckRBattistellaCHuizinghECorporate foresight: an emerging field with a rich traditionTechnol Forecast Soc Chang20151011910.1016/j.techfore.2015.11.002https://doi.org/10.1016/j.techfore.2015.11.002 Srikant R (1997) Mining sequential patterns. In: Proceedings of the eleventh international conference on data engineering JeromeSBruner: the act of discoveryHarv Educ Rev1961312132 Mei Q, Zhai C (2005) Discovering evolutionary theme patterns from text: an exploration of temporal text mining. In: Proceedings of ACM SIGKDD Nazemi K, Burkhardt D, Retz R, Kuijper A, Kohlhammer J (2014) Adaptive visualization of linked-data. In: Advances in visual computing. Springer, pp 872–883 MühlrothCGrottkeMA systematic literature review of mining weak signals and trends for corporate foresightJournal of Business Economics201888564368710.1007/s11573-018-0898-4https://doi.org/10.1007/s11573-018-0898-4 Nazemi K, Klepsch M, Burkhardt D, Kaupp L (2020) Comparison of full-text articles and theircorresponding abstracts for visual trend analytics. In: Proceedings of the 24rd international conference information visualisation. IEEE, IEEE. To appear HanQHeimerlFCodina-FilbaJLohmannSWannerLErtlTVisual patent trend analysis for informed decision making in technology managementWorld Patent Inf201749344210.1016/j.wpi.2017.04.003https://doi.org/10.1016/j.wpi.2017.04.003 GordonAVRamicMRohrbeckRSpaniolMJ50 years of corporate and organizational foresight: looking back and going forwardTechnol Forecast Soc Chang202015411996610.1016/j.techfore.2020.119966https://doi.org/10.1016/j.techfore.2020.119966 RohrbeckRGemündenHGCorporate foresight: its three roles in enhancing the innovation capacity of a firmTechnol Forecast Soc Chang201178223124310.1016/j.techfore.2010.06.019https://doi.org/10.1016/j.techfore.2010.06.019 Glance NS, Hurst M, Tomokiyo T (2004) Blogpulse: automated trend discovery for weblogs. In: WWW 2004 WS on weblogging. ACM KockAGemündenHGSalomoSSchultzCThe mixed blessings of technological innovativeness for the commercial success of new productsJ Prod Innov Manag201128s1284310.1111/j.1540-5885.2011.00859.xhttps://doi.org/10.1111/j.1540-5885.2011.00859.x Bun KK, Ishizuka M (2002) Topic extraction from news archive using tf*pdf algorithm. In: Proceedings of the third international conference on web information systems engineering, 2002. WISE 2002, pp 73–82. https://doi.org/10.1109/WISE.2002.1181645 SchoemakerPJHTetlockPEBuilding a more intelligent enterpriseMIT Sloan Management Review Spring20172017582837 LiuSZhouMXPanSSongYQianWCaiWLianXTiara: interactive, topic-based visual text summarization and analysisACM Trans Intell Syst Technol20123225: 125: 28https://doi.org/10.1145/2089094.2089101 BoninoDCiaramellaACornoFReview of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informaticsWorld Patent Inf2010321303810.1016/j.wpi.2009.05.008https://doi.org/10.1016/j.wpi.2009.05.008 van HamFPererASearch, show context, expand on demand: supporting large graph exploration with degree-of-interestIEEE Trans Vis Comput Graph20091595369010.1109/TVCG.2009.108 White RW, Roth RA (2009) Exploratory search: beyond the query-response paradigm. 1947-945X 1. https://doi.org/10.2200/s00174ed1v01y200901icr003 Nazemi K, Retz R, Burkhardt D, Kuijper A, Kohlhammer J, Fellner DW (2015) Visual trend analysis with digital libraries. In: Proceedings of the 15th international conference on knowledge technologies and data-driven business - i-KNOW 2015. ACM Press. https://doi.org/10.1145/2809563.2809569 Yu Z, Johnson TR, Kavuluru R (2013) Phrase based topic modeling for semantic information processing in biomedicine. In: Proceedings of the international conference on machine learning and applications, vol 2013. International Conference on Machine Learning and Applications, pp 440–445. https://doi.org/10.1109/ICMLA.2013.89 Goorha S, Ungar L (2010) Discovery of significant emerging trends. In: Proceedings of the 16th ACM SIGKDD. https://doi.org/10.1145/1835804.1835815 EggersJPParkKFIncumbent adaptation to technological change: the past, present, and future of research on heterogeneous incumbent responseAcademy of Management Annals201812135738910.5465/annals.2016.0051https://doi.org/10.5465/annals.2016.0051 Joho H, Azzopardi LA, Vanderbauwhede W (2010) A survey of patent users: an analysis of tasks, behavior, search functionality and system requirements. In: Proceedings of the third symposium on information interaction in context, IIiX ’10. ACM, New York, pp 13–24. https://doi.org/10.1145/1840784.1840789 ChenK-YLuesukprasertLChouS-CTHot topic extraction based on timeline analysis and multidimensional sentence modelingIEEE Trans Knowl Data Eng20071981016102510.1109/TKDE.2007.1040https://doi.org/10.1109/TKDE.2007.1040 Viermetz M, Skubacz M, Ziegler CNZ, Seipel D (2008) Tracking topic evolution in news environments. In: 10th IEEE conference on e-commerce technology, pp 215–220. https://doi.org/10.1109/CECandEEE.2008.112 BloomBSTaxonomy of educational objectives1956New YorkDavid McKay Co. Inc Kim Y, Tian Y, Jeong Y, Jihee R, Myaeng S-H, Shin SY, Ossowski S (2009) Automatic discovery of technology trends from patent text. In: Proceedings of the 2009 ACM symposium on applied computing (SAC), Honolulu, Hawaii, USA, March 9-12, 2009. ACM. https://doi.org/10.1145/1529282.1529611 Keim D, Kohlhammer J, Geoffrey E, Mansmann F (eds) (2010) Mastering the information age : solving problems with visual analytics. Eurographics Association, Goslar Nguyen K-L, Shin B-J, Yoo SJ (2016) Hot topic detection and technology trend tracking for patents utilizing term frequency and proportional document frequency and semantic information. In: 2016 International conference on big data and smart computing (bigcomp), pp 223–230. https://doi.org/10.1109/BIGCOMP.2016.7425917 MarchioniniGExploratory search: from finding to understandingCommun ACM2006494414610.1145/1121949.1121979https://doi.org/10.1145/1121949.1121979 Zhai CX, Velivelli A, Yu B (2004) A cross-collection mixture model for comparative text mining. In: Proceedings of the tenth ACM SIGKDD, KDD ’04. ACM, New York, pp 743–748. https://doi.org/10.1145/1014052.1014150 Mühlroth C, Grottke M (2020) Artificial intelligence in innovation: how to spot emerging trends and technologies. IEEE Trans Eng Manag, pp 1–18. https://doi.org/10.1109/TEM.2020.2989214 Nazemi K, Burkhardt D (2019) A visual analytics approach for analyzing technological trends in technology and innovation management. In: Bebis G, Boyle R, Parvin B, Koracin D, Ushizima D, Chai S, Sueda S, Lin X, Lu A, Thalmann D, Wang C, Xu P (eds) Advances in visual computing, lecture notes in computer science, vol 11845. Springer International Publishing, Cham, pp 283–294. https://doi.org/10.1007/978-3-030-33723-0_23 Feldman R, Aumann Y, Zilberstein A, Ben-Yehuda Y (1998) Trend graphs: visualizing the evolution of concept relationships in large document collections. In: Żytkow JM, Quafafou M (eds) Principles of data mining and knowledge discovery. Springer, Berlin, pp 38–46 HurtadoJLAgarwalAZhuATopic discovery and future trend forecasting for textsJournal of Big Data201631710.1186/s40537-016-0039-2https://doi.org/10.1186/s40537-016-0039-2 Collins C, Viegas FB, Wattenberg M (2009) Parallel tag clouds to explore and analyze faceted text corpora. In: VAST 2009. https://doi.org/10.1109/VAST.2009.5333443 Agrawal R, Psaila G, Wimmers EL, Zaït M (1995) Querying shapes of histories. In: Proceedings of 21th international conference on very large data bases (VLDB’95). Morgan Kaufmann Montes-y-GomezMGelbukhALopez-LopezAMining the news: trends, associations, and deviationsComputacion y Sistemas2001511424 RohrbeckRKumMECorporate foresight and its impact on firm performance: a longitudinal analysisTechnol Forecast Soc Chang201812910511610.1016/j.techfore.2017.12.013https://doi.org/10.1016/j.techfore.2017.12.013 Dou W, Wang X, Chang R, Ribarsky W (2011) Parallel topics: a probabilistic approach to exploring document collections. In: VAST 2011. https://doi.org/10.1109/VAST.2011.6102461 Nazemi K, Burkhard D (2019) Visual analytics for analyzing technological trends from text. In: 2019 23rd international conference information visualisation (IV). IEEE, pp 191–200. https://doi.org/10.1109/IV.2019.00041 Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: VL, pp 336–343 Lohmann S, Burch M, Schmauder H, Weiskopf D (2012) Visual analysis of microblog content using time-varying co-occurrence highlighting in tag clouds. In: Proceedings of the international working conference on advanced visual interfaces, AVI ’12. 10.1145/2254556.2254701. ACM, New York, pp 753–756 Lee B, Riche NH, Karlson AK, Carpendale S (2010) Sparkclouds: visualizing trends in tag clouds. IEEE TVCG 16. https://doi.org/10.1109/TVCG.2010.194 Noh Y, Hagedorn K, Newm S Havre (10972_CR18) 2002; 8 R Rohrbeck (10972_CR43) 2015; 101 PJH Schoemaker (10972_CR46) 2017; 2017 A Kock (10972_CR25) 2011; 28 10972_CR29 10972_CR35 10972_CR34 10972_CR37 10972_CR36 S Liu (10972_CR28) 2012; 3 10972_CR39 10972_CR38 AV Gordon (10972_CR16) 2020; 154 D Bonino (10972_CR5) 2010; 32 10972_CR9 10972_CR31 JL Hurtado (10972_CR20) 2016; 3 R Rohrbeck (10972_CR45) 2018; 129 F van Ham (10972_CR50) 2009; 15 C Mühlroth (10972_CR33) 2018; 88 BS Bloom (10972_CR4) 1956 10972_CR22 10972_CR24 10972_CR23 10972_CR26 10972_CR27 JP Eggers (10972_CR11) 2018; 12 SK Card (10972_CR7) 1999 F Heimerl (10972_CR19) 2016; 22 S Jerome (10972_CR21) 1961; 31 M Montes-y-Gomez (10972_CR32) 2001; 5 10972_CR55 10972_CR10 10972_CR54 10972_CR13 10972_CR12 10972_CR15 10972_CR14 10972_CR51 10972_CR53 10972_CR52 10972_CR6 10972_CR1 R Rohrbeck (10972_CR44) 2011; 78 10972_CR2 10972_CR3 Q Han (10972_CR17) 2017; 49 G Marchionini (10972_CR30) 2006; 49 K-Y Chen (10972_CR8) 2007; 19 S Sinan Erzurumlu (10972_CR48) 2020; 156 10972_CR47 10972_CR49 10972_CR40 10972_CR42 10972_CR41 |
| References_xml | – reference: Collins C, Viegas FB, Wattenberg M (2009) Parallel tag clouds to explore and analyze faceted text corpora. In: VAST 2009. https://doi.org/10.1109/VAST.2009.5333443 – reference: Bun KK, Ishizuka M (2002) Topic extraction from news archive using tf*pdf algorithm. In: Proceedings of the third international conference on web information systems engineering, 2002. WISE 2002, pp 73–82. https://doi.org/10.1109/WISE.2002.1181645 – reference: EggersJPParkKFIncumbent adaptation to technological change: the past, present, and future of research on heterogeneous incumbent responseAcademy of Management Annals201812135738910.5465/annals.2016.0051https://doi.org/10.5465/annals.2016.0051 – reference: Lent B, Agrawal R, Srikant R (1997) Discovering trends in text databases. In: Proceedings of KDD ’97 – reference: Feldman R, Aumann Y, Zilberstein A, Ben-Yehuda Y (1998) Trend graphs: visualizing the evolution of concept relationships in large document collections. In: Żytkow JM, Quafafou M (eds) Principles of data mining and knowledge discovery. Springer, Berlin, pp 38–46 – reference: BloomBSTaxonomy of educational objectives1956New YorkDavid McKay Co. Inc – reference: Kim Y, Tian Y, Jeong Y, Jihee R, Myaeng S-H, Shin SY, Ossowski S (2009) Automatic discovery of technology trends from patent text. In: Proceedings of the 2009 ACM symposium on applied computing (SAC), Honolulu, Hawaii, USA, March 9-12, 2009. ACM. https://doi.org/10.1145/1529282.1529611 – reference: LiuSZhouMXPanSSongYQianWCaiWLianXTiara: interactive, topic-based visual text summarization and analysisACM Trans Intell Syst Technol20123225: 125: 28https://doi.org/10.1145/2089094.2089101 – reference: Viermetz M, Skubacz M, Ziegler CNZ, Seipel D (2008) Tracking topic evolution in news environments. In: 10th IEEE conference on e-commerce technology, pp 215–220. https://doi.org/10.1109/CECandEEE.2008.112 – reference: Dou W, Wang X, Chang R, Ribarsky W (2011) Parallel topics: a probabilistic approach to exploring document collections. In: VAST 2011. https://doi.org/10.1109/VAST.2011.6102461 – reference: JeromeSBruner: the act of discoveryHarv Educ Rev1961312132 – reference: Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. Journal of Machine Learning Research 3. http://www.jmlr.org/papers/v3/blei03a.html – reference: Lee B, Riche NH, Karlson AK, Carpendale S (2010) Sparkclouds: visualizing trends in tag clouds. IEEE TVCG 16. https://doi.org/10.1109/TVCG.2010.194 – reference: Mei Q, Zhai C (2005) Discovering evolutionary theme patterns from text: an exploration of temporal text mining. In: Proceedings of ACM SIGKDD – reference: GordonAVRamicMRohrbeckRSpaniolMJ50 years of corporate and organizational foresight: looking back and going forwardTechnol Forecast Soc Chang202015411996610.1016/j.techfore.2020.119966https://doi.org/10.1016/j.techfore.2020.119966 – reference: RohrbeckRBattistellaCHuizinghECorporate foresight: an emerging field with a rich traditionTechnol Forecast Soc Chang20151011910.1016/j.techfore.2015.11.002https://doi.org/10.1016/j.techfore.2015.11.002 – reference: Lohmann S, Burch M, Schmauder H, Weiskopf D (2012) Visual analysis of microblog content using time-varying co-occurrence highlighting in tag clouds. In: Proceedings of the international working conference on advanced visual interfaces, AVI ’12. 10.1145/2254556.2254701. ACM, New York, pp 753–756 – reference: HeimerlFHanQKochSErtlTciterivers: visual analytics of citation patternsIEEE TVCG2016221190199https://doi.org/10.1109/TVCG.2015.2467621 – reference: Nguyen K-L, Shin B-J, Yoo SJ (2016) Hot topic detection and technology trend tracking for patents utilizing term frequency and proportional document frequency and semantic information. In: 2016 International conference on big data and smart computing (bigcomp), pp 223–230. https://doi.org/10.1109/BIGCOMP.2016.7425917 – reference: Wallach HM, Mimno DM, McCallum A (2009) Rethinking lda: why priors matter. In: Bengio Y, Schuurmans D, Lafferty JD, Williams CKI, Culotta A (eds) Advances in neural information processing systems, vol 22. Curran Associates, Inc, pp 1973–1981. http://papers.nips.cc/paper/3854-rethinking-lda-why-priors-matter.pdf – reference: Nazemi K, Retz R, Burkhardt D, Kuijper A, Kohlhammer J, Fellner DW (2015) Visual trend analysis with digital libraries. In: Proceedings of the 15th international conference on knowledge technologies and data-driven business - i-KNOW 2015. ACM Press. https://doi.org/10.1145/2809563.2809569 – reference: Nazemi K, Burkhard D (2019) Visual analytics for analyzing technological trends from text. In: 2019 23rd international conference information visualisation (IV). IEEE, pp 191–200. https://doi.org/10.1109/IV.2019.00041 – reference: SchoemakerPJHTetlockPEBuilding a more intelligent enterpriseMIT Sloan Management Review Spring20172017582837 – reference: MarchioniniGExploratory search: from finding to understandingCommun ACM2006494414610.1145/1121949.1121979https://doi.org/10.1145/1121949.1121979 – reference: Glance NS, Hurst M, Tomokiyo T (2004) Blogpulse: automated trend discovery for weblogs. In: WWW 2004 WS on weblogging. ACM – reference: Sinan ErzurumluSPachamanovaDTopic modeling and technology forecasting for assessing the commercial viability of healthcare innovationsTechnol Forecast Soc Chang202015612004110.1016/j.techfore.2020.120041https://doi.org/10.1016/j.techfore.2020.120041 – reference: BoninoDCiaramellaACornoFReview of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informaticsWorld Patent Inf2010321303810.1016/j.wpi.2009.05.008https://doi.org/10.1016/j.wpi.2009.05.008 – reference: Noh Y, Hagedorn K, Newman D (2011) Are learned topics more useful than subject headings. In: Proceedings of the 11th ACM/IEEE JCDL – reference: Mühlroth C, Grottke M (2020) Artificial intelligence in innovation: how to spot emerging trends and technologies. IEEE Trans Eng Manag, pp 1–18. https://doi.org/10.1109/TEM.2020.2989214 – reference: RohrbeckRGemündenHGCorporate foresight: its three roles in enhancing the innovation capacity of a firmTechnol Forecast Soc Chang201178223124310.1016/j.techfore.2010.06.019https://doi.org/10.1016/j.techfore.2010.06.019 – reference: KockAGemündenHGSalomoSSchultzCThe mixed blessings of technological innovativeness for the commercial success of new productsJ Prod Innov Manag201128s1284310.1111/j.1540-5885.2011.00859.xhttps://doi.org/10.1111/j.1540-5885.2011.00859.x – reference: Joho H, Azzopardi LA, Vanderbauwhede W (2010) A survey of patent users: an analysis of tasks, behavior, search functionality and system requirements. In: Proceedings of the third symposium on information interaction in context, IIiX ’10. ACM, New York, pp 13–24. https://doi.org/10.1145/1840784.1840789 – reference: Nazemi K, Klepsch M, Burkhardt D, Kaupp L (2020) Comparison of full-text articles and theircorresponding abstracts for visual trend analytics. In: Proceedings of the 24rd international conference information visualisation. IEEE, IEEE. To appear – reference: HurtadoJLAgarwalAZhuATopic discovery and future trend forecasting for textsJournal of Big Data201631710.1186/s40537-016-0039-2https://doi.org/10.1186/s40537-016-0039-2 – reference: Montes-y-GomezMGelbukhALopez-LopezAMining the news: trends, associations, and deviationsComputacion y Sistemas2001511424 – reference: HanQHeimerlFCodina-FilbaJLohmannSWannerLErtlTVisual patent trend analysis for informed decision making in technology managementWorld Patent Inf201749344210.1016/j.wpi.2017.04.003https://doi.org/10.1016/j.wpi.2017.04.003 – reference: Agrawal R, Psaila G, Wimmers EL, Zaït M (1995) Querying shapes of histories. In: Proceedings of 21th international conference on very large data bases (VLDB’95). Morgan Kaufmann – reference: HavreSHetzlerEWhitneyPNowellLThe meriver: visualizing thematic changes in large document collectionsIEEE TVCG200281920https://doi.org/10.1109/2945.981848 – reference: Nazemi K, Burkhardt D (2019) A visual analytics approach for analyzing technological trends in technology and innovation management. In: Bebis G, Boyle R, Parvin B, Koracin D, Ushizima D, Chai S, Sueda S, Lin X, Lu A, Thalmann D, Wang C, Xu P (eds) Advances in visual computing, lecture notes in computer science, vol 11845. Springer International Publishing, Cham, pp 283–294. https://doi.org/10.1007/978-3-030-33723-0_23 – reference: van HamFPererASearch, show context, expand on demand: supporting large graph exploration with degree-of-interestIEEE Trans Vis Comput Graph20091595369010.1109/TVCG.2009.108 – reference: Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: VL, pp 336–343 – reference: Feldman R, Dagan I (1995) Knowledge discovery in textual databases (kdt). In: Proceedings of the first international conference on knowledge discovery and data mining – reference: Nazemi K, Burkhardt D, Retz R, Kuijper A, Kohlhammer J (2014) Adaptive visualization of linked-data. In: Advances in visual computing. Springer, pp 872–883 – reference: Srikant R (1997) Mining sequential patterns. In: Proceedings of the eleventh international conference on data engineering – reference: Goorha S, Ungar L (2010) Discovery of significant emerging trends. In: Proceedings of the 16th ACM SIGKDD. https://doi.org/10.1145/1835804.1835815 – reference: Nazemi K (2016) Adaptive semantics visualization. Studies in Computational Intelligence 646. Springer International Publishing, Studies in Computational Intelligence 646. https://doi.org/10.1007/978-3-319-30816-6 – reference: Bertin J (1983) Semiology of graphics. University of Wisconsin Press – reference: Zhai CX, Velivelli A, Yu B (2004) A cross-collection mixture model for comparative text mining. In: Proceedings of the tenth ACM SIGKDD, KDD ’04. ACM, New York, pp 743–748. https://doi.org/10.1145/1014052.1014150 – reference: Keim D, Kohlhammer J, Geoffrey E, Mansmann F (eds) (2010) Mastering the information age : solving problems with visual analytics. Eurographics Association, Goslar – reference: Yu Z, Johnson TR, Kavuluru R (2013) Phrase based topic modeling for semantic information processing in biomedicine. In: Proceedings of the international conference on machine learning and applications, vol 2013. International Conference on Machine Learning and Applications, pp 440–445. https://doi.org/10.1109/ICMLA.2013.89 – reference: RohrbeckRKumMECorporate foresight and its impact on firm performance: a longitudinal analysisTechnol Forecast Soc Chang201812910511610.1016/j.techfore.2017.12.013https://doi.org/10.1016/j.techfore.2017.12.013 – reference: MühlrothCGrottkeMA systematic literature review of mining weak signals and trends for corporate foresightJournal of Business Economics201888564368710.1007/s11573-018-0898-4https://doi.org/10.1007/s11573-018-0898-4 – reference: CardSKMackinlayJDShneidermanBReadings in information visualization: using vision to think19991st edn.San MateoMorgan Kaufmann – reference: ChenK-YLuesukprasertLChouS-CTHot topic extraction based on timeline analysis and multidimensional sentence modelingIEEE Trans Knowl Data Eng20071981016102510.1109/TKDE.2007.1040https://doi.org/10.1109/TKDE.2007.1040 – reference: White RW, Roth RA (2009) Exploratory search: beyond the query-response paradigm. 1947-945X 1. https://doi.org/10.2200/s00174ed1v01y200901icr003 – ident: 10972_CR38 doi: 10.1007/978-3-319-14364-4_84 – ident: 10972_CR54 doi: 10.1109/ICMLA.2013.89 – ident: 10972_CR39 doi: 10.1109/IV51561.2020.00065 – ident: 10972_CR42 doi: 10.1145/1998076.1998160 – ident: 10972_CR37 doi: 10.1007/978-3-030-33723-0_23 – volume: 2017 start-page: 28 issue: 58 year: 2017 ident: 10972_CR46 publication-title: MIT Sloan Management Review Spring – volume: 15 start-page: 953 year: 2009 ident: 10972_CR50 publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2009.108 – volume: 101 start-page: 1 year: 2015 ident: 10972_CR43 publication-title: Technol Forecast Soc Chang doi: 10.1016/j.techfore.2015.11.002 – ident: 10972_CR10 doi: 10.1109/VAST.2011.6102461 – ident: 10972_CR26 doi: 10.1109/TVCG.2010.194 – ident: 10972_CR24 doi: 10.1145/1529282.1529611 – volume-title: Taxonomy of educational objectives year: 1956 ident: 10972_CR4 – ident: 10972_CR12 doi: 10.1007/BFb0094803 – volume: 5 start-page: 14 issue: 1 year: 2001 ident: 10972_CR32 publication-title: Computacion y Sistemas – volume: 49 start-page: 41 issue: 4 year: 2006 ident: 10972_CR30 publication-title: Commun ACM doi: 10.1145/1121949.1121979 – ident: 10972_CR52 – ident: 10972_CR36 doi: 10.1109/IV.2019.00041 – ident: 10972_CR14 – ident: 10972_CR40 doi: 10.1145/2809563.2809569 – volume: 154 start-page: 119966 year: 2020 ident: 10972_CR16 publication-title: Technol Forecast Soc Chang doi: 10.1016/j.techfore.2020.119966 – volume: 3 start-page: 25: 1 issue: 2 year: 2012 ident: 10972_CR28 publication-title: ACM Trans Intell Syst Technol doi: 10.1145/2089094.2089101 – ident: 10972_CR15 doi: 10.1145/1835804.1835815 – volume: 28 start-page: 28 issue: s1 year: 2011 ident: 10972_CR25 publication-title: J Prod Innov Manag doi: 10.1111/j.1540-5885.2011.00859.x – ident: 10972_CR3 – ident: 10972_CR51 doi: 10.1109/CECandEEE.2008.112 – ident: 10972_CR31 doi: 10.1145/1081870.1081895 – ident: 10972_CR41 doi: 10.1109/BIGCOMP.2016.7425917 – volume-title: Readings in information visualization: using vision to think year: 1999 ident: 10972_CR7 – ident: 10972_CR9 doi: 10.1109/VAST.2009.5333443 – ident: 10972_CR22 doi: 10.1145/1840784.1840789 – volume: 3 start-page: 7 issue: 1 year: 2016 ident: 10972_CR20 publication-title: Journal of Big Data doi: 10.1186/s40537-016-0039-2 – volume: 49 start-page: 34 year: 2017 ident: 10972_CR17 publication-title: World Patent Inf doi: 10.1016/j.wpi.2017.04.003 – ident: 10972_CR6 doi: 10.1109/WISE.2002.1181645 – volume: 129 start-page: 105 year: 2018 ident: 10972_CR45 publication-title: Technol Forecast Soc Chang doi: 10.1016/j.techfore.2017.12.013 – ident: 10972_CR13 – ident: 10972_CR49 – ident: 10972_CR55 doi: 10.1145/1014052.1014150 – ident: 10972_CR29 doi: 10.1145/2254556.2254701 – ident: 10972_CR2 – volume: 22 start-page: 190 issue: 1 year: 2016 ident: 10972_CR19 publication-title: IEEE TVCG doi: 10.1109/TVCG.2015.2467621 – volume: 8 start-page: 9 issue: 1 year: 2002 ident: 10972_CR18 publication-title: IEEE TVCG doi: 10.1109/2945.981848 – volume: 19 start-page: 1016 issue: 8 year: 2007 ident: 10972_CR8 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2007.1040 – volume: 88 start-page: 643 issue: 5 year: 2018 ident: 10972_CR33 publication-title: Journal of Business Economics doi: 10.1007/s11573-018-0898-4 – ident: 10972_CR27 – volume: 156 start-page: 120041 year: 2020 ident: 10972_CR48 publication-title: Technol Forecast Soc Chang doi: 10.1016/j.techfore.2020.120041 – ident: 10972_CR47 doi: 10.1109/VL.1996.545307 – volume: 31 start-page: 21 year: 1961 ident: 10972_CR21 publication-title: Harv Educ Rev – ident: 10972_CR1 – ident: 10972_CR34 doi: 10.1109/TEM.2020.2989214 – ident: 10972_CR35 doi: 10.1007/978-3-319-30816-6 – volume: 78 start-page: 231 issue: 2 year: 2011 ident: 10972_CR44 publication-title: Technol Forecast Soc Chang doi: 10.1016/j.techfore.2010.06.019 – volume: 12 start-page: 357 issue: 1 year: 2018 ident: 10972_CR11 publication-title: Academy of Management Annals doi: 10.5465/annals.2016.0051 – ident: 10972_CR53 doi: 10.2200/s00174ed1v01y200901icr003 – volume: 32 start-page: 30 issue: 1 year: 2010 ident: 10972_CR5 publication-title: World Patent Inf doi: 10.1016/j.wpi.2009.05.008 – ident: 10972_CR23 |
| SSID | ssj0016524 |
| Score | 2.3822799 |
| Snippet | The awareness of emerging trends is essential for strategic decision making because technological trends can affect a firm’s competitiveness and market... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 14803 |
| SubjectTerms | 1198: Advances in Multimedia Interaction and Visualization Computer Communication Networks Computer Science Data Structures and Information Theory Multimedia Information Systems Special Purpose and Application-Based Systems |
| Subtitle | An interaction approach for strategic decision making |
| Title | Visual analytics for technology and innovation management |
| URI | https://link.springer.com/article/10.1007/s11042-021-10972-3 |
| Volume | 81 |
| WOSCitedRecordID | wos000652455300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-7721 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: M0C dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7721 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: P5Z dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7721 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: K7- dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest ABI/INFORM Collection customDbUrl: eissn: 1573-7721 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 7WY dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7721 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1573-7721 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: M2O dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZg4wAHBgPEeEw5cINIbZK-joA2cUDTxGParUqzRJoEA60dvx-nSzsmoUlwbZOochJ_dm1_BrhSTCiJOEaZ9EN0UEJNE8EV1dJEsfQTacpkzNFjNBjE43EydEVheZXtXoUkS029KnbzbSmJTSmwUVNG-TY0A8s2Y33051EdOwgD18o29ijioe9KZX5fYx2O1mOhJcT0W__7uAPYdyYluV2egUPY0rM2tKp2DcTd3jbs_eAePIJkNM0XOE1aVhLL1UzQfCVF_acdX0zItO6ZSt7rPJljeO33Xu4fqOujQBVL_IIabljimSDQPNBC8DAwAnWghw-lFipDRIqjOBOR0p6MlOXw08ygZcEzpXC7-Ak0Zh8zfQpEasVQLRmDwC8yqdBbyybKSMY1ujYh64BfiTNVjmTc9rp4S1f0yFZSKUqqDH6zlHfgup7zuaTY2Dj6ptqB1F23fMPws78NP4ddZusbyozGC2gU84W-hB31VUzzeRead73B8KlbnrdvxiXMFg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4P_vgmwbaJP16FHFMnENwjr2VNEugoFPWzr_fS5d2DmSgr20SyiW5313v7ncAV5JyKRDHCBVegA5KoEjMmSRK6DASXix0mYw57IX9fjQaxc-2KCyvst2rkGSpqRfFbp4pJTEpBSZqSglbhw1u2uwYH_1lWMcOAt-2so1cgnjo2VKZ39dYhqPlWGgJMZ3m_z5uD3atSenczs_APqypSQuaVbsGx97eFuz84B48gHiY5TOcJgwrieFqdtB8dYr6Tzu-GDtZ3TPVea_zZA7htXM_uOsS20eBSBp7BdFM09jVvq-Yrzhnga856kAXHwrFZYqIFIVRykOpXBFKw-GnqEbLgqVS4naxI2hMPibqGByhJEW1pDUCP0-FRG8tHUstKFPo2gS0DV4lzkRaknHT6-ItWdAjG0klKKky-E0T1obres7nnGJj5eibagcSe93yFcNP_jb8Era6g6de0nvoP57CNjW1DmV24xk0iulMncOm_CqyfHpRnrlv87PNYA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWszxy86dJkd_M6iloUSyk-Sm9hs92FgsbSpP5-Z9MkbUEK4jWZXcLsY2Yy830DcCUplwLtGKHC8TBA8RQJOZNECe0HwgmFzosx-x2_2w0Gg7C3gOLPq93LlOQM02BYmpKsNR7q1hz45hhYiSkvMBlUStg6bHCMZExR18trv8ojeG7R1jawCdpGp4DN_D7Hsmlazovm5qZd__-H7sFu4Wpat7O9sQ9rKmlAvWzjYBWnugE7C5yEBxD2R-kUhwnDVmI4nC10a62s-gOPL4bWqOqlan1W9TOH8N5-eLt7JEV_BSJp6GREM01DW7uuYq7inHmu5ng32vhQKC5jtFSBH8Tcl8oWvjTcfopq9DhYLCUuIzuCWvKVqGOwhJIUryut0SHgsZAYxcVDqQVlCkMejzbBKVUbyYJ83PTA-IjmtMlGUxFqKk-K04g14boaM55Rb6yUvilXIyqOYbpC_ORv4pew1btvR52n7vMpbFMDgciLHs-glk2m6hw25Xc2SicX-fb7AZ7M1kQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+analytics+for+technology+and+innovation+management&rft.jtitle=Multimedia+tools+and+applications&rft.au=Nazemi%2C+Kawa&rft.au=Burkhardt%2C+Dirk&rft.au=Kock%2C+Alexander&rft.date=2022-05-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=11&rft.spage=14803&rft.epage=14830&rft_id=info:doi/10.1007%2Fs11042-021-10972-3&rft.externalDocID=10_1007_s11042_021_10972_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |