Guessing Individual Sequences: Generating Randomized Guesses Using Finite-State Machines
Motivated by earlier results on universal randomized guessing, we consider an individual-sequence approach to the guessing problem: in this setting, the goal is to guess a secret, individual (deterministic) vector <inline-formula> <tex-math notation="LaTeX">x^{n}=(x_{1},\ldots,...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory Ročník 66; číslo 5; s. 2912 - 2920 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Motivated by earlier results on universal randomized guessing, we consider an individual-sequence approach to the guessing problem: in this setting, the goal is to guess a secret, individual (deterministic) vector <inline-formula> <tex-math notation="LaTeX">x^{n}=(x_{1},\ldots,x_{n}) </tex-math></inline-formula>, by using a finite-state machine that sequentially generates randomized guesses from a stream of purely random bits. We define the finite-state guessing exponent as the asymptotic normalized logarithm of the minimum achievable moment of the number of randomized guesses, generated by any finite-state machine, until <inline-formula> <tex-math notation="LaTeX">x^{n} </tex-math></inline-formula> is guessed successfully. We show that the finite-state guessing exponent of any sequence is intimately related to its finite-state compressibility (due to Lempel and Ziv), and it is asymptotically achieved by the decoder of (a certain modified version of) the 1978 Lempel-Ziv data compression algorithm (a.k.a. the LZ78 algorithm), fed by purely random bits. The results are also extended to the case where the guessing machine has access to a side information sequence, <inline-formula> <tex-math notation="LaTeX">y^{n}=(y_{1},\ldots,y_{n}) </tex-math></inline-formula>, which is also an individual sequence. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2019.2946303 |