Guessing Individual Sequences: Generating Randomized Guesses Using Finite-State Machines

Motivated by earlier results on universal randomized guessing, we consider an individual-sequence approach to the guessing problem: in this setting, the goal is to guess a secret, individual (deterministic) vector <inline-formula> <tex-math notation="LaTeX">x^{n}=(x_{1},\ldots,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 66; číslo 5; s. 2912 - 2920
Hlavní autor: Merhav, Neri
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Motivated by earlier results on universal randomized guessing, we consider an individual-sequence approach to the guessing problem: in this setting, the goal is to guess a secret, individual (deterministic) vector <inline-formula> <tex-math notation="LaTeX">x^{n}=(x_{1},\ldots,x_{n}) </tex-math></inline-formula>, by using a finite-state machine that sequentially generates randomized guesses from a stream of purely random bits. We define the finite-state guessing exponent as the asymptotic normalized logarithm of the minimum achievable moment of the number of randomized guesses, generated by any finite-state machine, until <inline-formula> <tex-math notation="LaTeX">x^{n} </tex-math></inline-formula> is guessed successfully. We show that the finite-state guessing exponent of any sequence is intimately related to its finite-state compressibility (due to Lempel and Ziv), and it is asymptotically achieved by the decoder of (a certain modified version of) the 1978 Lempel-Ziv data compression algorithm (a.k.a. the LZ78 algorithm), fed by purely random bits. The results are also extended to the case where the guessing machine has access to a side information sequence, <inline-formula> <tex-math notation="LaTeX">y^{n}=(y_{1},\ldots,y_{n}) </tex-math></inline-formula>, which is also an individual sequence.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2019.2946303