Guessing Individual Sequences: Generating Randomized Guesses Using Finite-State Machines

Motivated by earlier results on universal randomized guessing, we consider an individual-sequence approach to the guessing problem: in this setting, the goal is to guess a secret, individual (deterministic) vector <inline-formula> <tex-math notation="LaTeX">x^{n}=(x_{1},\ldots,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 66; číslo 5; s. 2912 - 2920
Hlavní autor: Merhav, Neri
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Motivated by earlier results on universal randomized guessing, we consider an individual-sequence approach to the guessing problem: in this setting, the goal is to guess a secret, individual (deterministic) vector <inline-formula> <tex-math notation="LaTeX">x^{n}=(x_{1},\ldots,x_{n}) </tex-math></inline-formula>, by using a finite-state machine that sequentially generates randomized guesses from a stream of purely random bits. We define the finite-state guessing exponent as the asymptotic normalized logarithm of the minimum achievable moment of the number of randomized guesses, generated by any finite-state machine, until <inline-formula> <tex-math notation="LaTeX">x^{n} </tex-math></inline-formula> is guessed successfully. We show that the finite-state guessing exponent of any sequence is intimately related to its finite-state compressibility (due to Lempel and Ziv), and it is asymptotically achieved by the decoder of (a certain modified version of) the 1978 Lempel-Ziv data compression algorithm (a.k.a. the LZ78 algorithm), fed by purely random bits. The results are also extended to the case where the guessing machine has access to a side information sequence, <inline-formula> <tex-math notation="LaTeX">y^{n}=(y_{1},\ldots,y_{n}) </tex-math></inline-formula>, which is also an individual sequence.
AbstractList Motivated by earlier results on universal randomized guessing, we consider an individual–sequence approach to the guessing problem: in this setting, the goal is to guess a secret, individual (deterministic) vector [Formula Omitted], by using a finite–state machine that sequentially generates randomized guesses from a stream of purely random bits. We define the finite–state guessing exponent as the asymptotic normalized logarithm of the minimum achievable moment of the number of randomized guesses, generated by any finite–state machine, until [Formula Omitted] is guessed successfully. We show that the finite–state guessing exponent of any sequence is intimately related to its finite–state compressibility (due to Lempel and Ziv), and it is asymptotically achieved by the decoder of (a certain modified version of) the 1978 Lempel–Ziv data compression algorithm (a.k.a. the LZ78 algorithm), fed by purely random bits. The results are also extended to the case where the guessing machine has access to a side information sequence, [Formula Omitted], which is also an individual sequence.
Motivated by earlier results on universal randomized guessing, we consider an individual-sequence approach to the guessing problem: in this setting, the goal is to guess a secret, individual (deterministic) vector <inline-formula> <tex-math notation="LaTeX">x^{n}=(x_{1},\ldots,x_{n}) </tex-math></inline-formula>, by using a finite-state machine that sequentially generates randomized guesses from a stream of purely random bits. We define the finite-state guessing exponent as the asymptotic normalized logarithm of the minimum achievable moment of the number of randomized guesses, generated by any finite-state machine, until <inline-formula> <tex-math notation="LaTeX">x^{n} </tex-math></inline-formula> is guessed successfully. We show that the finite-state guessing exponent of any sequence is intimately related to its finite-state compressibility (due to Lempel and Ziv), and it is asymptotically achieved by the decoder of (a certain modified version of) the 1978 Lempel-Ziv data compression algorithm (a.k.a. the LZ78 algorithm), fed by purely random bits. The results are also extended to the case where the guessing machine has access to a side information sequence, <inline-formula> <tex-math notation="LaTeX">y^{n}=(y_{1},\ldots,y_{n}) </tex-math></inline-formula>, which is also an individual sequence.
Author Merhav, Neri
Author_xml – sequence: 1
  givenname: Neri
  orcidid: 0000-0002-9547-3243
  surname: Merhav
  fullname: Merhav, Neri
  email: merhav@ee.technion.ac.il
  organization: Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion-I.I.T., Haifa, Israel
BookMark eNp9kEFLAzEQhYMo2FbvgpcFz1uTTXaTeJNia6Ei2Ba8hXR3oilttia7gv56s23x4MFTmMz7Zt68Pjp1tQOErggeEoLl7WK6GGaYyGEmWUExPUE9kuc8lUXOTlEPYyJSyZg4R_0Q1rFkOcl66HXSQgjWvSVTV9lPW7V6k8zhowVXQrhLJuDA66YTvGhX1Vv7DVWyhyAkyz05ts42kM4b3UDypMt36yBcoDOjNwEuj-8ALccPi9FjOnueTEf3s7TMJGlSk3GIFjVllSxBkIqIFTPUxA_AnBQZGAlmVRBOy4IJZgQ1hlYMaDyGFJgO0M1h7s7X0XVo1LpuvYsrVUYl5YJTnkdVcVCVvg7Bg1GljXZt7Rqv7UYRrLoUVUxRdSmqY4oRxH_Anbdb7b_-Q64PiAWAX7kQXZPTH9Smfys
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TIT_2020_2974845
crossref_primary_10_1109_TII_2021_3075949
crossref_primary_10_3390_e23121694
crossref_primary_10_1109_TIT_2022_3194073
crossref_primary_10_3390_e25081199
Cites_doi 10.1109/ISIT.1994.394764
10.1109/18.868498
10.1109/TIT.2012.2228251
10.1109/ISIT.2003.1228156
10.1109/18.481781
10.1109/TIT.1976.1055501
10.1109/TIFS.2019.2895955
10.1109/18.144706
10.1109/18.133269
10.1109/TIT.1978.1055934
10.1109/18.79912
10.1109/TIT.1985.1057068
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2019.2946303
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 2920
ExternalDocumentID 10_1109_TIT_2019_2946303
8863037
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-f27e965a34d9ce81d18b4f3fa34e07162ef9efb6173c6484f83ff3d4e39441603
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530268900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Nov 30 04:40:07 EST 2025
Sat Nov 29 03:31:42 EST 2025
Tue Nov 18 22:25:23 EST 2025
Wed Aug 27 02:35:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f27e965a34d9ce81d18b4f3fa34e07162ef9efb6173c6484f83ff3d4e39441603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9547-3243
PQID 2393787375
PQPubID 36024
PageCount 9
ParticipantIDs proquest_journals_2393787375
crossref_primary_10_1109_TIT_2019_2946303
ieee_primary_8863037
crossref_citationtrail_10_1109_TIT_2019_2946303
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
merhav (ref10) 0
ref11
cover (ref2) 2006
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref6
  doi: 10.1109/ISIT.1994.394764
– ident: ref9
  doi: 10.1109/18.868498
– ident: ref8
  doi: 10.1109/TIT.2012.2228251
– year: 0
  ident: ref10
  article-title: Universal randomized guessing with application to asynchronous decentralized bruteo-force attacks
  publication-title: IEEE Trans Inf Theory
– ident: ref12
  doi: 10.1109/ISIT.2003.1228156
– year: 2006
  ident: ref2
  publication-title: Elements of Information Theory
– ident: ref1
  doi: 10.1109/18.481781
– ident: ref5
  doi: 10.1109/TIT.1976.1055501
– ident: ref11
  doi: 10.1109/TIFS.2019.2895955
– ident: ref4
  doi: 10.1109/18.144706
– ident: ref3
  doi: 10.1109/18.133269
– ident: ref14
  doi: 10.1109/TIT.1978.1055934
– ident: ref7
  doi: 10.1109/18.79912
– ident: ref13
  doi: 10.1109/TIT.1985.1057068
SSID ssj0014512
Score 2.3978655
Snippet Motivated by earlier results on universal randomized guessing, we consider an individual-sequence approach to the guessing problem: in this setting, the goal...
Motivated by earlier results on universal randomized guessing, we consider an individual–sequence approach to the guessing problem: in this setting, the goal...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2912
SubjectTerms Algorithms
Asymptotic properties
Binary trees
Compressibility
Data compression
Decoding
finite–state machine
Guessing exponent
Hidden Markov models
incremental parsing
individual sequences
Lempel–Ziv algorithm
Password
Probabilistic logic
Randomization
randomized guessing
sequence complexity
side information
State machines
Viterbi algorithm
Title Guessing Individual Sequences: Generating Randomized Guesses Using Finite-State Machines
URI https://ieeexplore.ieee.org/document/8863037
https://www.proquest.com/docview/2393787375
Volume 66
WOSCitedRecordID wos000530268900024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsQwFL04gwtdOD5xfJGFG8HOdJq0SdyJOCqoiI4yu9KmNzKgHZmHC7_eJH2gKIK7UpJSenKTk-bccwEOaZBQkXLl8VBzj4kw8BKaSE-bIA9pGqqidMLTNb-9FcOhvFuA4zoXBhGd-Aw79tKd5WdjNbe_yrpCRGbG5Q1ocB4VuVr1iQELe4UzeM8EsNlzVEeSvuwOrgZWwyU7gWT2Ad-WIFdT5cdE7FaXfut_77UKKyWLJKcF7GuwgPk6tKoKDaQM2HVY_mI3uAHDi7kVvebP5KpOwyIPlZb6hBQW1FYHTe6TPBu_jj4wI64TTokTF5D-yJJUz3FUcuOUmDjdhMf--eDs0isrK3gqkL2ZpwOOMgoTyjKp0FDWnkiZptrcQN96SqGWqFPDbqiKmGBaUK1pxtCm0drC1FvQzMc5bgMxBAoDiomfRT7TLEkjMzYN7TTEUCidiDZ0q48dq9J23Fa_eInd9sOXsYEntvDEJTxtOKp7vBWWG3-03bBw1O1KJNqwV-EZlzE5ja3Zm5meKA93fu-1C0uB3U07OeMeNGeTOe7DonqfjaaTAzfcPgEnN9J4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MC6gP3sV5zYMvgnVdk7aJbyLODecQnbK30qYnMtBO3OaDv94kvaAogm-lJKX0y0m-NN_5DsAR9WLKk1A6oa9Ch3Hfc2IaC0fpIPdp4su8dMJjN-z1-GAgbmtwUuXCIKIVn-GpubRn-elITs2vsgbngZ5xwxmY8xnz3DxbqzozYH4z9wZv6hDWu47yUNIVjX6nb1Rc4tQTzDzi2yJkq6r8mIrt-tJa-d-brcJywSPJeQ78GtQwW4eVskYDKUJ2HZa-GA5uwOBqamSv2RPpVIlY5L5UU5-R3ITaKKHJXZylo5fhB6bEdsIxsfIC0hoamupYlkpurBYTx5vw0LrsX7SdoraCIz3RnDjKC1EEfkxZKiRq0trkCVNU6RvoGlcpVAJVovkNlQHjTHGqFE0ZmkRaU5p6C2azUYbbQDSFQo9i7KaByxSLk0CPTk08NTXkUsW8Do3yY0eyMB439S-eI7sBcUWk4YkMPFEBTx2Oqx6vuenGH203DBxVuwKJOuyVeEZFVI4jY_emJyga-ju_9zqEhXb_pht1O73rXVj0zN7aihv3YHbyNsV9mJfvk-H47cAOvU9CRdW_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guessing+Individual+Sequences%3A+Generating+Randomized+Guesses+Using+Finite-State+Machines&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Merhav%2C+Neri&rft.date=2020-05-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=66&rft.issue=5&rft.spage=2912&rft.epage=2920&rft_id=info:doi/10.1109%2FTIT.2019.2946303&rft.externalDocID=8863037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon