Developing a Conditional Variational Autoencoder to Guide Spectral Data Augmentation for Calibration Modeling

To deal with the typically insufficiently labeled samples involved in practical spectroscopy measurements, a conditional variational autoencoder (CVAE) is proposed to guide the spectral data augmentation calibration modeling method for in situ measurement. First, the CVAE is designed to generate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 71; S. 1 - 8
Hauptverfasser: Mu, Guoqing, Chen, Junghui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To deal with the typically insufficiently labeled samples involved in practical spectroscopy measurements, a conditional variational autoencoder (CVAE) is proposed to guide the spectral data augmentation calibration modeling method for in situ measurement. First, the CVAE is designed to generate the virtual spectra such that the augmentation training set is employed to develop the calibration model. To use the generated unlabeled samples for modeling with online measurement purposes, a semi-supervised ladder network (S2-LN)-based regression learning model is developed. The proposed method incorporates all generated virtual unlabeled samples with real labeled samples. An important advantage of this approach is that it ensures that the generated virtual spectra and the real labeled spectra are the same distribution, which in turn ensures the effectiveness of semi-supervised learning. A numerical simulation example and an experimental example of the glucose fermentation process illustrate the effectiveness of the approach.
AbstractList To deal with the typically insufficiently labeled samples involved in practical spectroscopy measurements, a conditional variational autoencoder (CVAE) is proposed to guide the spectral data augmentation calibration modeling method for in situ measurement. First, the CVAE is designed to generate the virtual spectra such that the augmentation training set is employed to develop the calibration model. To use the generated unlabeled samples for modeling with online measurement purposes, a semi-supervised ladder network (S2-LN)-based regression learning model is developed. The proposed method incorporates all generated virtual unlabeled samples with real labeled samples. An important advantage of this approach is that it ensures that the generated virtual spectra and the real labeled spectra are the same distribution, which in turn ensures the effectiveness of semi-supervised learning. A numerical simulation example and an experimental example of the glucose fermentation process illustrate the effectiveness of the approach.
Author Chen, Junghui
Mu, Guoqing
Author_xml – sequence: 1
  givenname: Guoqing
  orcidid: 0000-0002-4593-1007
  surname: Mu
  fullname: Mu, Guoqing
  email: guoqingmu@foxmail.com
  organization: School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China
– sequence: 2
  givenname: Junghui
  orcidid: 0000-0002-9994-839X
  surname: Chen
  fullname: Chen, Junghui
  email: jason@wavenet.cycu.edu.tw
  organization: Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
BookMark eNp9kMFPwyAUxomZidv0buKFxHMnUErLcdl0LtniwemVUAoLS1cqpSb-9zK7ePDgu7xH3vd75PsmYNS4RgNwi9EMY8QfduvtjCBCZimmBDF0AcY4y_KEM0ZGYIwQLhJOM3YFJl13QAjljOZjcFzqT1271jZ7KOHCNZUN1jWyhu_SW3me531wulGu0h4GB1e9rTR8bbUKPm6XMsgo2R91E34IaJyHC1nb0g_vbSTr-MU1uDSy7vTNuU_B29PjbvGcbF5W68V8kyjCcUgMIWWmEM5JWipV5FxJyXluDM5oyajkilVGVXklTcY4M5plFcUlMqTARQTTKbgf7rbeffS6C-Lgeh-ddIKwFHNGM4Sjig0q5V3XeW2EsoOBaMvWAiNxilbEaMUpWnGONoLoD9h6e5T-6z_kbkCs1vpXzllB01jf7cSHbQ
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2023_3303498
crossref_primary_10_1109_JSTARS_2022_3204541
crossref_primary_10_1016_j_measurement_2025_118875
crossref_primary_10_1109_JPHOT_2025_3605280
crossref_primary_10_1109_TIM_2023_3318690
crossref_primary_10_7717_peerj_cs_1266
crossref_primary_10_1109_TIM_2025_3555690
crossref_primary_10_1109_ACCESS_2023_3258544
Cites_doi 10.1109/TIM.2020.3029456
10.1109/TII.2021.3053106
10.1016/j.neunet.2020.11.006
10.1088/1361-6501/abc63f
10.1016/j.jcrysgro.2016.11.064
10.1109/TIM.2014.2308985
10.1109/SSCI.2017.8285168
10.1109/TII.2021.3053128
10.1007/s10994-019-05855-6
10.1109/TII.2020.2972351
10.1021/acs.iecr.8b05043
10.1145/3422622
10.1109/TASE.2020.3043531
10.1016/j.aca.2018.04.004
10.1016/j.aap.2020.105950
10.1109/APSIPA.2017.8282225
10.1109/IIPHDW.2018.8388338
10.1016/j.ces.2020.115867
10.1109/TMI.2019.2914656
10.1007/978-3-642-36657-4_7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3142060
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 8
ExternalDocumentID 10_1109_TIM_2022_3142060
9684333
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 109-2221-E-033-060-MY3; MOST 110-2221-E-007-014
  funderid: 10.13039/501100004663
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-f22b5c01723bcc879caa997ff154b64a9c6dfcd7daf5696fe65d41b0f28185c03
IEDL.DBID RIE
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761247800040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:17:38 EDT 2025
Tue Nov 18 22:18:53 EST 2025
Sat Nov 29 04:38:18 EST 2025
Wed Aug 27 02:49:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-f22b5c01723bcc879caa997ff154b64a9c6dfcd7daf5696fe65d41b0f28185c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4593-1007
0000-0002-9994-839X
PQID 2631964501
PQPubID 85462
PageCount 8
ParticipantIDs ieee_primary_9684333
crossref_citationtrail_10_1109_TIM_2022_3142060
crossref_primary_10_1109_TIM_2022_3142060
proquest_journals_2631964501
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref18
Vincent (ref25) 2010; 11
ref20
ref22
Zhu (ref8) 2005
ref21
Sohn (ref23); 28
Rasmus (ref24) 2015
ref7
ref9
ref4
ref3
ref6
Kingma (ref19) 2013
ref5
Särelä (ref26) 2005; 6
References_xml – ident: ref13
  doi: 10.1109/TIM.2020.3029456
– ident: ref18
  doi: 10.1109/TII.2021.3053106
– ident: ref10
  doi: 10.1016/j.neunet.2020.11.006
– year: 2015
  ident: ref24
  article-title: Semi-supervised learning with ladder networks
  publication-title: arXiv:1507.02672
– ident: ref17
  doi: 10.1088/1361-6501/abc63f
– ident: ref5
  doi: 10.1016/j.jcrysgro.2016.11.064
– volume: 6
  start-page: 233
  year: 2005
  ident: ref26
  article-title: Denoising source separation
  publication-title: J. Mach. Learn. Res.
– ident: ref3
  doi: 10.1109/TIM.2014.2308985
– ident: ref21
  doi: 10.1109/SSCI.2017.8285168
– ident: ref7
  doi: 10.1109/TII.2021.3053128
– ident: ref12
  doi: 10.1007/s10994-019-05855-6
– ident: ref2
  doi: 10.1109/TII.2020.2972351
– year: 2013
  ident: ref19
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv:1312.6114
– ident: ref4
  doi: 10.1021/acs.iecr.8b05043
– ident: ref16
  doi: 10.1145/3422622
– ident: ref9
  doi: 10.1109/TASE.2020.3043531
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: ref25
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref1
  doi: 10.1016/j.aca.2018.04.004
– ident: ref20
  doi: 10.1016/j.aap.2020.105950
– ident: ref15
  doi: 10.1109/APSIPA.2017.8282225
– volume-title: Semi-supervised learning literature survey
  year: 2005
  ident: ref8
– ident: ref14
  doi: 10.1109/IIPHDW.2018.8388338
– ident: ref6
  doi: 10.1016/j.ces.2020.115867
– ident: ref22
  doi: 10.1109/TMI.2019.2914656
– volume: 28
  start-page: 3483
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref23
  article-title: Learning structured output representation using deep conditional generative models
– ident: ref11
  doi: 10.1007/978-3-642-36657-4_7
SSID ssj0007647
Score 2.4831932
Snippet To deal with the typically insufficiently labeled samples involved in practical spectroscopy measurements, a conditional variational autoencoder (CVAE) is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Calibration
Calibration model building
conditional variational autoencoder (CVAE)
Data augmentation
Data models
Fermentation
In situ measurement
Numerical models
Regression models
semi-supervised
Semi-supervised learning
Semisupervised learning
Spectra
Spectroscopy
Spectrum analysis
Task analysis
Training
virtual sample
Title Developing a Conditional Variational Autoencoder to Guide Spectral Data Augmentation for Calibration Modeling
URI https://ieeexplore.ieee.org/document/9684333
https://www.proquest.com/docview/2631964501
Volume 71
WOSCitedRecordID wos000761247800040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MoaAPXqbivJEHXwTr0qRtmscxnQo6fNDhW0lzEUFX2Tp_v0naVUERfOvDSSn9kpxL8n0H4ETbFABLSgKllQiiWKqAS0YDaXJGjcKx8Qzv8S0bjdKnJ37fgrOGC6O19pfP9Ll79Gf5qpBzVyrr8SSNKKVLsMQYq7haza7LkqjSxwztArZRweJIEvPew82dTQQJsflpRLAXo_xyQb6nyo-N2HuX4cb_vmsT1usoEvUr2LegpScdWPumLdiBFX-3U8624e2iIUYhgQaFO6T2BUA0tolyXQxE_XlZOFFLpaeoLNDV_EVp5LrTu1IIuhClsCbPbzVVaYJssIscsSuvphByTdUctX0HHoeXD4ProO6yEEjCwzIwhOSxdKkgzaVMGZdCcM6MscFVnkSCy0QZqZgSJk54YnQSqyjMsfE6UhLTXWhPioneA5QK5RTalXWAaWQUFRo7MR6jQq0oMaILvcWPz2QtQe46YbxmPhXBPLNQZQ6qrIaqC6fNiPdKfuMP220HTWNXo9KFwwW2Wb0-ZxlJvBJZjMP930cdwKp7d1VsOYR2OZ3rI1iWH-XLbHrsp94nx0jYBQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH64oh7cRnFcc_AiWCdN0iVHccdx8DCKt5JmEUGnMtPx95uknSoogrceXmjpl-Qtyfc9gENtUwAsKQmUViJgkVQBlwkNpMkTahSOjGd4P3aTXi99euL3U3DccGG01v7ymT5xj_4sXxVy7EplHR6njFI6DbMRYySs2FrNvpvErFLIDO0StnHB5FAS807_5s6mgoTYDJUR7OUov5yQ76ryYyv2_uVy5X9ftgrLdRyJTivg12BKD9Zh6Zu64DrM-9udctSCt_OGGoUEOivcMbUvAaJHmyrX5UB0Oi4LJ2up9BCVBboavyiNXH96VwxB56IU1uT5rSYrDZANd5GjduXVJEKurZojt2_Aw-VF_-w6qPssBJLwsAwMIXkkXTJIcynThEshOE-MseFVHjPBZayMVIkSJop5bHQcKRbm2HglKYnpJswMioHeApQK5TTalXWBKTOKCo2dHI9RoVaUGNGGzuTHZ7IWIXe9MF4zn4xgnlmoMgdVVkPVhqNmxHslwPGHbctB09jVqLRhd4JtVq_QUUZir0UW4XD791EHsHDdv-tm3Zve7Q4suvdUpZddmCmHY70Hc_KjfBkN9_00_AQqldtM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+Conditional+Variational+Autoencoder+to+Guide+Spectral+Data+Augmentation+for+Calibration+Modeling&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Mu%2C+Guoqing&rft.au=Chen%2C+Junghui&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FTIM.2022.3142060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3142060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon