Energy-Based Nonlinear Adaptive Control Design for the Quadrotor UAV System With a Suspended Payload
In this paper, the control problem for an underactuated quadrotor unmanned aerial vehicle (UAV) with a suspended payload is investigated. An energy-based nonlinear controller is proposed that is able to control the quadrotor UAV's position and the payload's swing angle asymptotically. An a...
Saved in:
| Published in: | IEEE transactions on industrial electronics (1982) Vol. 67; no. 3; pp. 2054 - 2064 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0278-0046, 1557-9948 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, the control problem for an underactuated quadrotor unmanned aerial vehicle (UAV) with a suspended payload is investigated. An energy-based nonlinear controller is proposed that is able to control the quadrotor UAV's position and the payload's swing angle asymptotically. An adaptive control design is developed to compensate for the unknown length of the cable which is used to connect the UAV and the payload. The Lyapunov-based stability analysis is employed together to prove the stability of the closed-loop system. Detailed real-time experimental results illustrate the good performance of the proposed controller. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0278-0046 1557-9948 |
| DOI: | 10.1109/TIE.2019.2902834 |