Energy-Based Nonlinear Adaptive Control Design for the Quadrotor UAV System With a Suspended Payload
In this paper, the control problem for an underactuated quadrotor unmanned aerial vehicle (UAV) with a suspended payload is investigated. An energy-based nonlinear controller is proposed that is able to control the quadrotor UAV's position and the payload's swing angle asymptotically. An a...
Uložené v:
| Vydané v: | IEEE transactions on industrial electronics (1982) Ročník 67; číslo 3; s. 2054 - 2064 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0278-0046, 1557-9948 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, the control problem for an underactuated quadrotor unmanned aerial vehicle (UAV) with a suspended payload is investigated. An energy-based nonlinear controller is proposed that is able to control the quadrotor UAV's position and the payload's swing angle asymptotically. An adaptive control design is developed to compensate for the unknown length of the cable which is used to connect the UAV and the payload. The Lyapunov-based stability analysis is employed together to prove the stability of the closed-loop system. Detailed real-time experimental results illustrate the good performance of the proposed controller. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0278-0046 1557-9948 |
| DOI: | 10.1109/TIE.2019.2902834 |