An Adaptive Continuous-Time Algorithm for Nonsmooth Convex Resource Allocation Optimization

This article develops a novel continuous-time algorithm based on the idea of adaptive strategy for solving a resource allocation optimization with nonsmooth objective functions and constraints over multiagent network. It is proved that the state solution is globally bounded and finally converges to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 67; číslo 11; s. 6038 - 6044
Hlavní autoři: Jia, Wenwen, Liu, Na, Qin, Sitian
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article develops a novel continuous-time algorithm based on the idea of adaptive strategy for solving a resource allocation optimization with nonsmooth objective functions and constraints over multiagent network. It is proved that the state solution is globally bounded and finally converges to an optimal solution to the nonsmooth convex resource allocation problem. Compared with the existing algorithms, the strong/strict convexity of the objective function is relaxed and only convexity is required. Moreover, by employing an exact penalty approach for the distributed optimization, the primal-dual variables is avoided to introduce. Therefore, the proposed algorithm has a simple structure with low dimensionality of state variables. To show the effectiveness and practicability of the presented algorithm, a numerical example and an application in power system are presented.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2021.3137054