Color image segmentation based on improved sine cosine optimization algorithm

Segmentation refers to the process of dividing an image into multiple regions based on some criteria such as intensity and color. In recent years, color image segmentation has received considerable attention from the researchers. However, it is still a highly complicated task due to the presence of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Soft computing (Berlin, Germany) Ročník 26; číslo 23; s. 13193 - 13203
Hlavní autori: Mookiah, Sivasubramanian, Parasuraman, Kumar, Kumar Chandar, S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2022
Predmet:
ISSN:1432-7643, 1433-7479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Segmentation refers to the process of dividing an image into multiple regions based on some criteria such as intensity and color. In recent years, color image segmentation has received considerable attention from the researchers. However, it is still a highly complicated task due to the presence of more attributes or components as compared to monochrome images. Numerous meta-heuristics algorithms are developed to determine the optimal threshold value for segmenting color images efficiently. This paper presents an enhanced sine cosine algorithm (ESCA) to seek threshold for segmenting color images. Sine cosine algorithm (SCA) is a population-based optimization algorithm which has the ability of preventing local minima problem. First an input image is transformed to CIE L*a*b* color reduced space. ESCA is applied to determine the optimal threshold values for segmentation. The performance of the proposed method is tested on color images from Berkeley database, and segmentation results are compared with two metaheuristic algorithms, namely particle swarm optimization (PSO) and standard SCA. Experimental results are validated by measuring peak signal–noise ratio (PSNR), structural similarity index and computation time for all the images investigated. Results revealed that the proposed method outperforms the other methods like PSO and SCA by achieving PSNR of 23 dB and SSIM of 0.93 and also require less time for finding optimal threshold values than PSO and SCA.
AbstractList Segmentation refers to the process of dividing an image into multiple regions based on some criteria such as intensity and color. In recent years, color image segmentation has received considerable attention from the researchers. However, it is still a highly complicated task due to the presence of more attributes or components as compared to monochrome images. Numerous meta-heuristics algorithms are developed to determine the optimal threshold value for segmenting color images efficiently. This paper presents an enhanced sine cosine algorithm (ESCA) to seek threshold for segmenting color images. Sine cosine algorithm (SCA) is a population-based optimization algorithm which has the ability of preventing local minima problem. First an input image is transformed to CIE L*a*b* color reduced space. ESCA is applied to determine the optimal threshold values for segmentation. The performance of the proposed method is tested on color images from Berkeley database, and segmentation results are compared with two metaheuristic algorithms, namely particle swarm optimization (PSO) and standard SCA. Experimental results are validated by measuring peak signal–noise ratio (PSNR), structural similarity index and computation time for all the images investigated. Results revealed that the proposed method outperforms the other methods like PSO and SCA by achieving PSNR of 23 dB and SSIM of 0.93 and also require less time for finding optimal threshold values than PSO and SCA.
Author Mookiah, Sivasubramanian
Kumar Chandar, S.
Parasuraman, Kumar
Author_xml – sequence: 1
  givenname: Sivasubramanian
  surname: Mookiah
  fullname: Mookiah, Sivasubramanian
  email: sivasu4all@gmail.com
  organization: Department of Computer Science, JP College of Arts and Science
– sequence: 2
  givenname: Kumar
  surname: Parasuraman
  fullname: Parasuraman, Kumar
  organization: Centre for Information Technology and Engineering, Manonmaniam Sundaranar University
– sequence: 3
  givenname: S.
  surname: Kumar Chandar
  fullname: Kumar Chandar, S.
  organization: School of Business and Management CHRIST (Deemed to be University)
BookMark eNp9kMtOwzAQRS1UJNrCD7DKDxjGdlwnS1TxqFTEBtaWE9vBVWJXdkCCr8ckrFh0NXcxZ0b3rNDCB28QuiZwQwDEbQLgABgoxSAIY5ifoSUpcxClqBdTplhsSnaBVikdACgRnC3R8zb0IRZuUJ0pkukG40c1uuCLRiWjixzccIzhM-fkvCnaMI1wHN3gvudV1XchuvF9uETnVvXJXP3NNXp7uH_dPuH9y-Nue7fHLa3JiI1mJaW6BFY11uhKgeINsVq3itAazKauWrBMUKW4EIpaqhtOuCUM9IZkeo3ofLeNIaVorDzGXCF-SQLyV4ichcgsRE5CJM9Q9Q9q3dx1jMr1p1E2oyn_8Z2J8hA-os8VT1E_41V42A
CitedBy_id crossref_primary_10_1109_TCE_2025_3572009
crossref_primary_10_3390_app15105693
crossref_primary_10_1007_s00371_023_03218_w
crossref_primary_10_1007_s11042_023_15812_0
crossref_primary_10_1007_s12065_025_01069_z
crossref_primary_10_1016_j_asoc_2024_112108
crossref_primary_10_1016_j_bspc_2024_106492
crossref_primary_10_3390_biomimetics10090596
crossref_primary_10_1007_s00521_023_09023_9
crossref_primary_10_3390_e24111640
crossref_primary_10_1007_s10586_024_04978_3
crossref_primary_10_1007_s00500_022_07559_x
Cites_doi 10.36548/jscp.2021.1.004
10.1016/j.knosys.2015.12.022
10.1016/j.patrec.2021.01.005
10.1007/s11633-016-0975-5
10.1155/2015/120495
10.1007/s11771-012-1107-1
10.1016/j.tcs.2013.08.005
10.1016/j.asoc.2012.03.072
10.36548/jiip.2021.1.003
10.1007/s00500-015-1677-6
10.1016/j.patcog.2019.03.011
10.1016/j.patcog.2010.07.013
10.1016/j.swevo.2013.02.001
10.1109/ACCESS.2019.289667
10.1016/j.dsp.2016.01.010
10.1016/j.eswa.2016.03.032
10.1007/978-3-642-37192-9_32
10.1155/2014/690349
10.1145/2464576.2466810
10.1007/978-981-10-5565-2_17
10.1007/978-3-642-41181-6_16
10.1109/IMCEC.2016.7867535
10.1109/ICIIP.2011.6108965
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
DBID AAYXX
CITATION
DOI 10.1007/s00500-022-07133-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 13203
ExternalDocumentID 10_1007_s00500_022_07133_5
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c291t-ed3422d4038bfed8a0a5b1fddca1290e698c0f372aa577a2f2db515f130d61ed3
IEDL.DBID RSV
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000817862800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Sat Nov 29 03:36:18 EST 2025
Tue Nov 18 21:27:16 EST 2025
Fri Feb 21 02:47:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Metaheuristics algorithm
PSNR
Color image segmentation
Enhanced sine cosine algorithm
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-ed3422d4038bfed8a0a5b1fddca1290e698c0f372aa577a2f2db515f130d61ed3
PageCount 11
ParticipantIDs crossref_primary_10_1007_s00500_022_07133_5
crossref_citationtrail_10_1007_s00500_022_07133_5
springer_journals_10_1007_s00500_022_07133_5
PublicationCentury 2000
PublicationDate 20221200
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Koresh, Chacko, Periyanayagi (CR13) 2021; 143
Gonzalez, Woods (CR9) 2002
Karuppusamy (CR12) 2021; 3
Akay (CR2) 2013; 13
CR11
Ma, Li, Fan, Fan (CR14) 2015
Mirjalili (CR16) 2016
CR10
Nishad, Chezian (CR18) 2013; 4
Xu, Jia, Lang, Peng, Sun (CR26) 2019; 7
Xing, Guan-Zheng, Soliman (CR25) 2012; 19
Agrawal, Panda, Bhuyan, Panigrahi (CR1) 2013; 11
Suresh, Lal (CR21) 2016; 58
Arumugadevi, Seenivasagam (CR6) 2014; 13
Caraiman, Manta (CR8) 2019; 529
Rajaby, Ahadi, Aghaeinia (CR19) 2016
Borjigin, Sahoo (CR7) 2019
Mala, Sridevi (CR15) 2015; 20
CR4
CR3
CR5
Napeleon, Subramaniam, Praneesh, Sathya (CR17) 2012; 2
Tesfamikael, Fray, Mengsteab, Semere, Amanuel (CR23) 2021; 3
CR27
CR24
Sivasubramanian, Sivajothi, Kumar (CR20) 2019; 7
Tan, Isa (CR22) 2011; 44
S Caraiman (7133_CR8) 2019; 529
P Karuppusamy (7133_CR12) 2021; 3
D Napeleon (7133_CR17) 2012; 2
HJ Koresh (7133_CR13) 2021; 143
L Xing (7133_CR25) 2012; 19
S Suresh (7133_CR21) 2016; 58
C Mala (7133_CR15) 2015; 20
KS Tan (7133_CR22) 2011; 44
7133_CR5
7133_CR27
L Ma (7133_CR14) 2015
7133_CR24
PM Nishad (7133_CR18) 2013; 4
cr-split#-7133_CR4.2
cr-split#-7133_CR4.1
L Xu (7133_CR26) 2019; 7
S Mirjalili (7133_CR16) 2016
S Agrawal (7133_CR1) 2013; 11
B Akay (7133_CR2) 2013; 13
7133_CR3
S Borjigin (7133_CR7) 2019
S Arumugadevi (7133_CR6) 2014; 13
E Rajaby (7133_CR19) 2016
RC Gonzalez (7133_CR9) 2002
HH Tesfamikael (7133_CR23) 2021; 3
M Sivasubramanian (7133_CR20) 2019; 7
7133_CR11
7133_CR10
References_xml – volume: 3
  start-page: 29
  issue: 01
  year: 2021
  end-page: 37
  ident: CR12
  article-title: Building detection using two-layered novel convolutional neural networks
  publication-title: J Soft Comput Paradig (JSCP)
  doi: 10.36548/jscp.2021.1.004
– year: 2016
  ident: CR16
  article-title: SCA: a sine cosine algorithm for solving optimization algorithm
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 143
  start-page: 104
  year: 2021
  end-page: 112
  ident: CR13
  article-title: A modified capsule network algorithm for oct corneal image segmentation
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2021.01.005
– volume: 13
  start-page: 491
  year: 2014
  end-page: 500
  ident: CR6
  article-title: Color image segmentation using feed forward neural networks with FCM
  publication-title: Int J Autom Comput
  doi: 10.1007/s11633-016-0975-5
– year: 2015
  ident: CR14
  article-title: A hybrid method for image segmentation based on artificial fish swarm algorithm and fuzzy -means clustering
  publication-title: Comput Math Methods Med
  doi: 10.1155/2015/120495
– volume: 19
  start-page: 1040
  year: 2012
  end-page: 1048
  ident: CR25
  article-title: Color image segmentation using mean shift and improved ant clustering
  publication-title: J Cent South Univ
  doi: 10.1007/s11771-012-1107-1
– volume: 529
  start-page: 46
  year: 2019
  end-page: 60
  ident: CR8
  article-title: Histogram based segmentation of quantum images
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2013.08.005
– volume: 4
  start-page: 44
  issue: 1
  year: 2013
  end-page: 48
  ident: CR18
  article-title: Various colour spaces and colour space conversion algorithms
  publication-title: J Glob Res Comput Sci
– volume: 13
  start-page: 3066
  issue: 6
  year: 2013
  end-page: 3091
  ident: CR2
  article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.03.072
– volume: 3
  start-page: 21
  issue: 01
  year: 2021
  end-page: 35
  ident: CR23
  article-title: Simulation of eye tracking control based electric wheelchair construction by image segmentation algorithm
  publication-title: J Innov Image Process (JIIP)
  doi: 10.36548/jiip.2021.1.003
– ident: CR4
– ident: CR10
– volume: 20
  start-page: 1793
  year: 2015
  end-page: 1810
  ident: CR15
  article-title: Multilevel threshold selection for image segmentation using soft computing techniques
  publication-title: Soft Comput
  doi: 10.1007/s00500-015-1677-6
– volume: 7
  start-page: 52
  year: 2019
  end-page: 56
  ident: CR20
  article-title: An efficient color image segmentation using texture features and improved saliency map
  publication-title: Int J Recent Technol Eng
– ident: CR27
– year: 2019
  ident: CR7
  article-title: Color image segmentation based on multi-level Tsallis-Havrda-Charv at entropy and 2D histogram using PSO algorithms
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2019.03.011
– volume: 2
  start-page: 109
  issue: 3
  year: 2012
  end-page: 117
  ident: CR17
  article-title: Self-organizing map based color image segmentaion with fuzzy c-clustering and saliency map
  publication-title: Int J Comput Appl
– ident: CR3
– volume: 44
  start-page: 1
  issue: 1
  year: 2011
  end-page: 15
  ident: CR22
  article-title: Color image segmentation using histogram thresholding -Fuzzy C-means hybrid approach
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2010.07.013
– ident: CR11
– volume: 11
  start-page: 16
  year: 2013
  end-page: 30
  ident: CR1
  article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2013.02.001
– ident: CR5
– volume: 7
  start-page: 19502
  year: 2019
  end-page: 119538
  ident: CR26
  article-title: A novel method for multilevel color image segmentation based on dragonfly algorithm and differential evolution
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.289667
– year: 2016
  ident: CR19
  article-title: Robust color image segmentation using fuzzy c-means with weighted hue and intensity
  publication-title: Digital Signal Process
  doi: 10.1016/j.dsp.2016.01.010
– year: 2002
  ident: CR9
  publication-title: Digital image processing
– ident: CR24
– volume: 58
  start-page: 184
  year: 2016
  end-page: 209
  ident: CR21
  article-title: An efficient cuckoo search algorithm based multilevel thresholding for segmentation of satellite images using different objective functions
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.03.032
– ident: #cr-split#-7133_CR4.2
– ident: #cr-split#-7133_CR4.1
  doi: 10.1007/978-3-642-37192-9_32
– volume: 529
  start-page: 46
  year: 2019
  ident: 7133_CR8
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2013.08.005
– year: 2016
  ident: 7133_CR19
  publication-title: Digital Signal Process
  doi: 10.1016/j.dsp.2016.01.010
– volume: 7
  start-page: 19502
  year: 2019
  ident: 7133_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.289667
– ident: 7133_CR27
  doi: 10.1155/2014/690349
– volume: 4
  start-page: 44
  issue: 1
  year: 2013
  ident: 7133_CR18
  publication-title: J Glob Res Comput Sci
– year: 2016
  ident: 7133_CR16
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– ident: 7133_CR3
  doi: 10.1145/2464576.2466810
– volume: 143
  start-page: 104
  year: 2021
  ident: 7133_CR13
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2021.01.005
– volume: 13
  start-page: 3066
  issue: 6
  year: 2013
  ident: 7133_CR2
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.03.072
– volume: 3
  start-page: 21
  issue: 01
  year: 2021
  ident: 7133_CR23
  publication-title: J Innov Image Process (JIIP)
  doi: 10.36548/jiip.2021.1.003
– volume: 3
  start-page: 29
  issue: 01
  year: 2021
  ident: 7133_CR12
  publication-title: J Soft Comput Paradig (JSCP)
  doi: 10.36548/jscp.2021.1.004
– ident: 7133_CR10
  doi: 10.1007/978-981-10-5565-2_17
– volume-title: Digital image processing
  year: 2002
  ident: 7133_CR9
– ident: 7133_CR5
  doi: 10.1007/978-3-642-41181-6_16
– volume: 13
  start-page: 491
  year: 2014
  ident: 7133_CR6
  publication-title: Int J Autom Comput
  doi: 10.1007/s11633-016-0975-5
– volume: 58
  start-page: 184
  year: 2016
  ident: 7133_CR21
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.03.032
– volume: 11
  start-page: 16
  year: 2013
  ident: 7133_CR1
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2013.02.001
– ident: 7133_CR24
  doi: 10.1109/IMCEC.2016.7867535
– volume: 7
  start-page: 52
  year: 2019
  ident: 7133_CR20
  publication-title: Int J Recent Technol Eng
– ident: 7133_CR11
  doi: 10.1109/ICIIP.2011.6108965
– year: 2019
  ident: 7133_CR7
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2019.03.011
– year: 2015
  ident: 7133_CR14
  publication-title: Comput Math Methods Med
  doi: 10.1155/2015/120495
– volume: 19
  start-page: 1040
  year: 2012
  ident: 7133_CR25
  publication-title: J Cent South Univ
  doi: 10.1007/s11771-012-1107-1
– volume: 20
  start-page: 1793
  year: 2015
  ident: 7133_CR15
  publication-title: Soft Comput
  doi: 10.1007/s00500-015-1677-6
– volume: 2
  start-page: 109
  issue: 3
  year: 2012
  ident: 7133_CR17
  publication-title: Int J Comput Appl
– volume: 44
  start-page: 1
  issue: 1
  year: 2011
  ident: 7133_CR22
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2010.07.013
SSID ssj0021753
Score 2.391771
Snippet Segmentation refers to the process of dividing an image into multiple regions based on some criteria such as intensity and color. In recent years, color image...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 13193
SubjectTerms Artificial Intelligence
Computational Intelligence
Control
Engineering
Focus
Mathematical Logic and Foundations
Mechatronics
Robotics
Title Color image segmentation based on improved sine cosine optimization algorithm
URI https://link.springer.com/article/10.1007/s00500-022-07133-5
Volume 26
WOSCitedRecordID wos000817862800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_c9EEf_JiK82PkwTcNtGm7to8yHII6xI-xt5Im6Rysq6zVv99Llg4HMtCn5iEp4ZLc7y65-x3AJQ8c3vVETAWP0UFJ3S5Fo15SnDQLXckzZuqQDR_CwSAajeInmxRW1tHu9ZOk0dTLZDdNVeJQHX1uPCsaNGAT4S7UBRueX4ZLN8tyT6IhgLYjAq5Nlfn9H6twtPoWaiCmv_e_ye3DrjUpyc1iDxzAhpq1YK8u10Ds6W3Bzg_uwUN47KHam5NJjgqFlGqc2ySkGdHAJgk2JubCAds6Np6IwnwK1DG5Td4kfDou5pPqPT-Ct_7ta--O2toKVLDYraiSns-Y9B0vSjMlI-7wIHUzKQXXN1OqG0fCybyQcR6EIWcZkymaPhlCnuy6OPoYmrNipk6ARMoLVJylbpQyH2WfatY0L5I-F1GmYrcNbi3iRFjicV3_YposKZON9BKUXmKklwRtuFqO-VjQbqztfV2vSmKPYLmm--nfup_BNtMLa2JYzqFZzT_VBWyJr2pSzjvQuA9px-zAb4oc05I
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oFNSD06k4P3PwpoU2_T7KUCZuQ3CO3UqapLOwdtJW_36TLC0OZKCn5PASwkvyPpL3fg_ghrgm8WwaGpSEwkGJLc8QRj0zxKKxbzGSYFWHbDLwR6NgOg1fdFJYWUe711-SSlI3yW4SqsQ0ZPS58qwMdxO2HIn4JX3010njZmnsSWEICNtRKFydKvP7HKvqaPUvVKmYx_b_FncA-9qkRPfLM3AIGzzvQLsu14D07e3A3g_swSMY9oTYK1CaCYGCSj7LdBJSjqRiY0h0UvXgIPoyNh7RhWoWQsZkOnkTkflsUaTVe3YMb48P417f0LUVDIpDqzI4sx2MmWPaQZxwFhCTuLGVMEaJfJniXhhQM7F9TIjr-wQnmMXC9EmEymOeJUafQCtf5PwUUMBtl4dJbAUxdgTvY4maZgfMITRIeGh1wapZHFENPC7rX8yjBjJZcS8S3IsU9yK3C7fNmI8l7MZa6rt6VyJ9Bcs15Gd_I7-Gnf54OIgGT6Pnc9jFcpNVPMsFtKrik1_CNv2q0rK4UufwG4OU1aY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujB-sT63IM3DSabpEmOUi2KtRQfpbew2UcttGlpo7_f2e22tCCCeMoeZsMyszuP3ZlvAC5Z6LKqzxOHswQDlMyrOujUCwcXTSNPMEVNH7J2I2o2404naS1U8Zts99mT5LSmQaM05cXNSKibeeGbhi1xHZ2JbqIsJ1yFtQAjGZ3U9_LanodcFocSnQL0I9H42rKZn_-xbJqW30WNuamX_7_QHdi2ria5ne6NXViR-R6UZ20ciD3Ve7C1gEm4D881VIdj0hugoiET2R3Y4qScaIMnCA565iICxzpnnvCh-QxR9wxsUSdh_e5w3Cs-BgfwXr9_qz04tueCw2niFY4UfkCpCFw_zpQUMXNZmHlKCM70jZWsJjF3lR9RxsIoYlRRkaFLpNAUiqqHsw-hlA9zeQQkln4oE5V5cUYDlEOm0dT8WASMx0omXgW8GbtTbgHJdV-MfjqHUjbcS5F7qeFeGlbgaj5nNIXj-JX6eiah1B7NyS_kx38jv4CN1l09bTw2n05gk2oZmzSXUygV4095Buv8q-hNxudmS34D483eig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Color+image+segmentation+based+on+improved+sine+cosine+optimization+algorithm&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Mookiah%2C+Sivasubramanian&rft.au=Parasuraman%2C+Kumar&rft.au=Kumar+Chandar%2C+S.&rft.date=2022-12-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=26&rft.issue=23&rft.spage=13193&rft.epage=13203&rft_id=info:doi/10.1007%2Fs00500-022-07133-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_022_07133_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon