Approximation of eigenvalues of evolution operators for linear coupled renewal and retarded functional differential equations

Recently, systems of coupled renewal and retarded functional differential equations have begun to play a central role in complex and realistic models of population dynamics. In view of studying the local asymptotic stability of equilibria and (mainly) periodic solutions, we propose a pseudospectral...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ricerche di matematica Ročník 69; číslo 2; s. 457 - 481
Hlavní autoři: Breda, Dimitri, Liessi, Davide
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.11.2020
Témata:
ISSN:0035-5038, 1827-3491
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Recently, systems of coupled renewal and retarded functional differential equations have begun to play a central role in complex and realistic models of population dynamics. In view of studying the local asymptotic stability of equilibria and (mainly) periodic solutions, we propose a pseudospectral collocation method to approximate the eigenvalues of the evolution operators of linear coupled equations, providing rigorous error and convergence analyses and numerical tests. The method combines the ideas of the analogous techniques developed separately for renewal equations and for retarded functional differential equations. Coupling them is not trivial, due to the different state spaces of the two classes of equations, as well as to their different regularization properties.
ISSN:0035-5038
1827-3491
DOI:10.1007/s11587-020-00513-9