Fast and Simple Bregman Projection Methods for Solving Variational Inequalities and Related Problems in Banach Spaces

In this paper, we study the problem of finding a common solution to variational inequality and fixed point problems for a countable family of Bregman weak relatively nonexpansive mappings in real reflexive Banach spaces. Two inertial-type algorithms with adaptive step size rules for solving the prob...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Resultate der Mathematik Ročník 75; číslo 4
Hlavní autoři: Gibali, Aviv, Jolaoso, Lateef Olakunle, Mewomo, Oluwatosin Temitope, Taiwo, Adeolu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2020
Témata:
ISSN:1422-6383, 1420-9012
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we study the problem of finding a common solution to variational inequality and fixed point problems for a countable family of Bregman weak relatively nonexpansive mappings in real reflexive Banach spaces. Two inertial-type algorithms with adaptive step size rules for solving the problem are presented and their strong convergence theorems are established. The usage of the Bregman distances and the Armijo line search technique (which avoids the need to know a priori the Lipschitz constant of the involved operators), enable great flexibility of the proposed scheme, and besides their theoretical extensions, it might also have a practical potential.
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-020-01306-0