Fast and Simple Bregman Projection Methods for Solving Variational Inequalities and Related Problems in Banach Spaces

In this paper, we study the problem of finding a common solution to variational inequality and fixed point problems for a countable family of Bregman weak relatively nonexpansive mappings in real reflexive Banach spaces. Two inertial-type algorithms with adaptive step size rules for solving the prob...

Full description

Saved in:
Bibliographic Details
Published in:Resultate der Mathematik Vol. 75; no. 4
Main Authors: Gibali, Aviv, Jolaoso, Lateef Olakunle, Mewomo, Oluwatosin Temitope, Taiwo, Adeolu
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.12.2020
Subjects:
ISSN:1422-6383, 1420-9012
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we study the problem of finding a common solution to variational inequality and fixed point problems for a countable family of Bregman weak relatively nonexpansive mappings in real reflexive Banach spaces. Two inertial-type algorithms with adaptive step size rules for solving the problem are presented and their strong convergence theorems are established. The usage of the Bregman distances and the Armijo line search technique (which avoids the need to know a priori the Lipschitz constant of the involved operators), enable great flexibility of the proposed scheme, and besides their theoretical extensions, it might also have a practical potential.
AbstractList In this paper, we study the problem of finding a common solution to variational inequality and fixed point problems for a countable family of Bregman weak relatively nonexpansive mappings in real reflexive Banach spaces. Two inertial-type algorithms with adaptive step size rules for solving the problem are presented and their strong convergence theorems are established. The usage of the Bregman distances and the Armijo line search technique (which avoids the need to know a priori the Lipschitz constant of the involved operators), enable great flexibility of the proposed scheme, and besides their theoretical extensions, it might also have a practical potential.
ArticleNumber 179
Author Jolaoso, Lateef Olakunle
Mewomo, Oluwatosin Temitope
Gibali, Aviv
Taiwo, Adeolu
Author_xml – sequence: 1
  givenname: Aviv
  orcidid: 0000-0002-2150-553X
  surname: Gibali
  fullname: Gibali, Aviv
  email: avivg@braude.ac.il
  organization: Department of Mathematics, ORT Braude College, The Center for Mathematics and Scientific Computation, University of Haifa
– sequence: 2
  givenname: Lateef Olakunle
  surname: Jolaoso
  fullname: Jolaoso, Lateef Olakunle
  organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, DSI-NRF Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS)
– sequence: 3
  givenname: Oluwatosin Temitope
  surname: Mewomo
  fullname: Mewomo, Oluwatosin Temitope
  organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal
– sequence: 4
  givenname: Adeolu
  surname: Taiwo
  fullname: Taiwo, Adeolu
  organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal
BookMark eNp9kMFOwzAMhiMEEmzwApzyAgU77ZrsCBODSUMgBlwrL3W3TF06kg6Jt6fbOHHYybas77f89cSpbzwLcY1wgwD6NgKAGiSgIAFMIU_gRFxg1o1DQHW671WSpyY9F70YVwADpVBdiO2YYivJl3Lm1pua5X3gxZq8fA3Nim3rGi-fuV02ZZRVE-Ssqb-dX8hPCo52W6rlxPPXlmrXOo77qDeuqeVylzGveR2l8_KePNmlnG3IcrwUZxXVka_-al98jB_eR0_J9OVxMrqbJlYNsU3YVJhqJGMRVaZL0spqQs2MBFpXaDKTZ3YwVJjbrFLz3DDxnCudY2nmJu0Ldci1oYkxcFVsgltT-CkQip244iCu6MQVe3EFdJD5B1nX7n9tA7n6OJoe0Njd8QsOxarZhs5RPEb9AhelhYw
CitedBy_id crossref_primary_10_1007_s41478_025_00896_8
crossref_primary_10_1007_s00009_023_02535_7
crossref_primary_10_1080_02331934_2021_1895154
crossref_primary_10_2989_16073606_2024_2327562
crossref_primary_10_1007_s40314_022_02006_x
crossref_primary_10_1007_s11067_024_09615_5
crossref_primary_10_1080_02331934_2024_2377241
crossref_primary_10_1007_s10915_025_02994_y
crossref_primary_10_1007_s10915_024_02784_y
crossref_primary_10_1007_s40314_024_02829_w
crossref_primary_10_1007_s12215_023_00978_1
crossref_primary_10_1007_s11587_021_00624_x
crossref_primary_10_3390_math13121962
crossref_primary_10_1007_s40314_023_02499_0
crossref_primary_10_1007_s10957_023_02320_2
crossref_primary_10_1007_s11075_021_01170_1
crossref_primary_10_1186_s13660_023_03043_8
crossref_primary_10_1007_s10440_024_00678_7
crossref_primary_10_1515_cmam_2020_0174
crossref_primary_10_1007_s40590_021_00340_4
crossref_primary_10_1080_02331934_2024_2347967
crossref_primary_10_1007_s10114_024_2594_3
crossref_primary_10_1007_s10013_024_00710_1
crossref_primary_10_3390_axioms10010016
crossref_primary_10_1007_s40314_023_02244_7
crossref_primary_10_1007_s00186_023_00846_9
crossref_primary_10_1002_mma_9479
crossref_primary_10_1007_s10473_022_0501_5
crossref_primary_10_1007_s10915_021_01670_1
crossref_primary_10_1007_s12215_024_01022_6
crossref_primary_10_1007_s40306_023_00521_5
crossref_primary_10_1007_s11565_020_00354_2
crossref_primary_10_3390_axioms9040143
crossref_primary_10_1080_02331934_2022_2123705
crossref_primary_10_1007_s12215_022_00853_5
Cites_doi 10.1016/0041-5553(67)90040-7
10.23952/jnfa.2020.6
10.1080/02331939608844225
10.1007/s10957-018-1228-2
10.1186/s13660-018-1852-2
10.1007/s40314-019-0841-5
10.36045/bbms/1590199308
10.1515/JAA.2001.151
10.1080/10556788.2010.551536
10.1007/s40314-019-1014-2
10.1515/dema-2019-0013
10.1080/02331934.2020.1716752
10.1137/110820002
10.1186/s13663-018-0641-4
10.1080/01630560903499852
10.1016/j.jmaa.2013.08.054
10.1186/1687-1812-2013-141
10.1142/5021
10.1007/s11587-019-00460-0
10.1007/s10957-010-9757-3
10.1137/140980910
10.1186/s13663-018-0634-3
10.1016/j.na.2009.04.053
10.1007/s10957-019-01509-8
10.1080/02331934.2020.1723586
10.1080/02331934.2018.1476515
10.1016/j.amc.2015.08.096
10.1155/2011/420192
10.1016/0041-5553(64)90137-5
10.1081/NFA-100105310
10.1186/s13663-015-0395-1
10.1080/02331934.2010.539689
10.1080/02331934.2018.1490417
10.1090/conm/568/11285
10.1080/02331934.2018.1543295
10.1007/s12215-019-00431-2
10.1007/978-1-4419-9569-8_15
10.1016/j.na.2009.10.009
10.1080/02331934.2020.1808648
10.1007/s10957-020-01672-3
10.2989/16073606.2019.1593255
10.1007/s11784-018-0634-2
10.1007/s40840-019-00781-1
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
Copyright_xml – notice: Springer Nature Switzerland AG 2020
DBID AAYXX
CITATION
DOI 10.1007/s00025-020-01306-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-9012
ExternalDocumentID 10_1007_s00025_020_01306_0
GrantInformation_xml – fundername: International Mathematical Union (IMU) Breakout Graduate Fellowship Award
– fundername: National Research Foundation (NRF)
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RHV
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YNT
Z45
ZMTXR
ZWQNP
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c291t-e8f1371a8c11247da72c7a17ee1a077f184864c59216c4f2b68eaebef761d8b83
IEDL.DBID RSV
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583024100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1422-6383
IngestDate Sat Nov 29 03:47:24 EST 2025
Tue Nov 18 22:12:02 EST 2025
Fri Feb 21 02:37:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Bregman weak relatively nonexpansive mappings
47H10
90C33
Variational inequality problem
Banach spaces
47J25
47N10
inertial-type algorithm
65J15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e8f1371a8c11247da72c7a17ee1a077f184864c59216c4f2b68eaebef761d8b83
ORCID 0000-0002-2150-553X
ParticipantIDs crossref_primary_10_1007_s00025_020_01306_0
crossref_citationtrail_10_1007_s00025_020_01306_0
springer_journals_10_1007_s00025_020_01306_0
PublicationCentury 2000
PublicationDate 20201200
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle Resultate der Mathematik
PublicationTitle Resultate der Mathematik
PublicationTitleAbbrev Results Math
PublicationYear 2020
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References TaiwoAJolaosoLOMewomoOTGibaliAOn generalized mixed equilibrium problem with α-β-μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -\beta -\mu $$\end{document} bifunction and μ-τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu -\tau $$\end{document} monotone mappingJ. Nonlinear Convex Anal.2020216138114014157378
NaraghiradEYaoJCBregman weak relatively nonexpansive mappings in Banach spaceFixed Point Theory Appl.2013307283210.1186/1687-1812-2013-1411423.47046
Taiwo, A., Jolaoso, L.O., Mewomo, O. T.: A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces. Comput. Appl. Math. 38(2), Art. 77 (2019)
ReemDReichSDe PierroARRe-examination of Bregman functions and new properties of their divergencesOptimization201968279348390216610.1080/02331934.2018.1543295
PolyakBTSome methods of speeding up the convergence of iteration methodsUSSR Comput. Math. Math. Phys.1964411710.1016/0041-5553(64)90137-5
ReemDReichSDe PierroARBISTA: a telescopic Bregmanian proximal gradient method without the global Lipschitz continuity assumptionJ. Optim. Theory Appl.2019182851884398214010.1007/s10957-019-01509-8
IusemANOteroGInexact versions of proximal point and augmented Lagrangian algorithms in Banach spacesNumer. Funct. Anal. Optim.200122609640184957010.1081/NFA-100105310
CensorYReichSIterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimizationOptimization199637323339140264110.1080/02331939608844225
ReichSSabachSTwo strong convergence theorems for a proximal method in reflexive Banach spacesNumer. Funct. Anal. Optim.2010312244267724310.1080/01630560903499852
Chidume, C.E., Nnakwe, M.O.: Convergence theorems of subgradient extragradient algorithm for solving variational inequalities and a convex feasibility problem. Fixed Point Theory Appl. 2018, Art. 16. https://doi.org/10.1186/s13663-018-0641-4 (2018)
ZălinescuCConvex Analysis in General Vector Spaces2002River Edge, NJWorld Scientific Publishing10.1142/5021
KorpelevichGMAn extragradient method for finding saddle points and for other problemsEkon. Mat. Metody1976127477564511210342.90044
SuYWangZXuHStrong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappingsNonlinear Analysis20097156165628256022910.1016/j.na.2009.04.053
JolaosoLOTaiwoAAlakoyaTOMewomoOTA unified algorithm for solving variational inequality and fixed point problems with application to the split equality problemComput. Appl. Math.201939138404071110.1007/s40314-019-1014-2
ChenCMaSYangJA general inertial proximal point algorithm for mixed variational inequality problemSIAM J. Optim.201525421202142341359710.1137/140980910
BregmanLMThe relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programmingUSSR Comput. Math. Math. Phys.19677320021721561710.1016/0041-5553(67)90040-7
HeSWuTGibaliADongQLTotally relaxed, self-adaptive algorithm for solving variational inequalities over the intersection of sub-level setsOptimization2018387796110.1080/02331934.2018.14765151414.49009
Naraghirad, E., Timnak, S.: Strong convergence theorems for Bregman W—mappings with applications to convex feasibility problems in Banach spaces. Fixed Point Theory Appl. 2015, Art. 149 (2015)
CensorYGibaliAReichSStrong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert spaceOptim. Meth. Softw.201126827845283780010.1080/10556788.2010.551536
IzuchukwuCOgwoGNMewomoOTAn inertial method for solving generalized split feasibility problems over the solution set of Monotone variational inclusionsOptimization202010.1080/02331934.2020.1808648
ButnariuDReichSZaslavskiAJAsymptotic behavior of relatively nonexpansive operators in Banach spacesJ. Appl. Anal.20017151174187580410.1515/JAA.2001.151
MashreghiJNasriMForcing strong convergence of Korpelevich’s method in Banach spaces with its application in game theoryNonlinear Anal.20107220862099257760610.1016/j.na.2009.10.009
GibaliAShehuYAn efficient iterative method for finding common fixed point and variational inequalities in Hilbert spacesOptimization2019681332390215410.1080/02331934.2018.1490417
OgwoGNIzuchukwuCAremuKOMewomoOTA viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard spaceBull. Belg. Math. Soc. Simon Stevin2020271127152410270510.36045/bbms/1590199308
FicheraGSul problema elastostatico di Signorini con ambigue condizioni al contornoAtti Accad. Naz. Lincei VIII. Ser. Rend. Cl. Sci. Fis. Mat. Nat.1963341381421766610128.18305
CensorYGibaliAReichSExtensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean spaceOptimization20126111191132296612110.1080/02331934.2010.539689
Chidume, C.E., Ikechukwu, S.I., Adamu, A.: Inertial algorithm for approximating a common fixed point for a countable family of relatively nonexpansive maps. Fixed Point Theory Appl. 2018, Art. 9. https://doi.org/10.1186s/13663-018-0634-3 (2018)
FacchineiFPangJSFinite Dimensional Variational Inequalities and Complementarity Problems, Springer Series on Operations Research2003New YorkSpringer1062.90001
Zheng, L.: A double projection algorithm for quasimonotone variational inequalities in Banach spaces. J. Inequal. Appl. 2018, Art. 256. http://doi.org/10.1186/s13660-018-1852-2 (2018)
DehghanHIzuchukwuCMewomoOTTabaDAUgwunnadiGCIterative algorithm for a family of monotone inclusion problems in CAT(0) spacesQuaest. Math.201910.2989/16073606.2019.1593255
Chen, J., Wan, Z., Yuan, L., Zheng, Y.: Approximation of fixed points of weak Bregman relatively nonexpansive mappings in Banach spaces. IJMMS, 2011, Art. ID 420192 (2011)
Reich,S., Sabach,S.: Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach Spaces. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer, New York, pp. 301–316 (2011)
FicheraGProblemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contornoAtti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I VIII. Ser.19647911401786310146.21204
Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems. Optimization (2020). https://doi.org/10.1080/02331934.2020.1723586
NakajoKStrong convergence for gradient projection method and relatively nonexpansive mappings in Banach spacesAppl. Math. Comput.201527125125834148011410.47031
JolaosoLOAlakoyaTOTaiwoAMewomoOTA parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problemsRend. Circ. Mat. Palermo201910.1007/s12215-019-00431-2
JolaosoLOAlakoyaTOTaiwoAMewomoOTInertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert spaceOptimization202010.1080/02331934.2020.17167521438.65138
ReichSSabachSThree strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spacesContemp. Math.2012568225240290846210.1090/conm/568/11285
CaiGGibaliAIyiolaOSShehuYA new double-projection method for solving variational inequalities in Banach spacesJ. Optim. Theory Appl.2018178219239381837010.1007/s10957-018-1228-2
TaiwoAJolaosoLOMewomoOTGeneral alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spacesRic. Mat.2020691235259409818310.1007/s11587-019-00460-0
Abass, H.A., Aremu, K.O., Jolaoso, L.O., Mewomo, O.T.: An inertial forward-backward splitting method for approximating solutions of certain optimization problems. J. Nonlinear Funct. Anal. 2020, Art. ID 6 (2020)
Liu, Y.: Variational inequalities and optimization problems, Ph.D. thesis, University of Liverpool (2015)
Thong, D.V., Hieu, D.V.: Modified Tseng’s extragradient algorithms for variational inequality problems. J. Fixed Point Theory Appl. 20, Art. 152. https://doi.org/10.1007/s11784-018-0634-2 (2018)
TaiwoAJolaosoLOMewomoOTParallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problemsBull. Malays. Math. Sci. Soc.20204318931918406145810.1007/s40840-019-00781-1
MishraPChattopadhyayJSinghRBhattacherjeeVConvergence of common solution of variational inequality and fixed point of a pseudocontractive mappingInnovations in Soft Computing and Information Technology2019SingaporeSpringer
JolaosoLOTaiwoAAlakoyaTOMewomoOTA self adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spacesDemonstr. Math.201952183203393833110.1515/dema-2019-0013
CensorYGibaliAReichSThe subgradient extragradient method for solving variational inequalities in Hilbert spaceJ. Optim. Theory Appl.20111482318335278056610.1007/s10957-010-9757-3
JolaosoLOTaiwoAAlakoyaTOMewomoOTStrong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach spaceJ. Optim. Theory Appl.20201853744766411063610.1007/s10957-020-01672-3
KassayGReichSSabachSIterative methods for solving systems of variational inequalities in reflexive Banach spacesSIAM J. Optim.20112113191344285458610.1137/110820002
WangRHuangXTanDOn the numerical radius of Lipschitz operators in Banach spacesJ. Math. Anal. Appl.20144111118311846310.1016/j.jmaa.2013.08.054
AntipinASOn a method for convex programs using a symmetrical modification of the
E Naraghirad (1306_CR35) 2013
A Taiwo (1306_CR47) 2020; 69
G Fichera (1306_CR17) 1963; 34
1306_CR2
G Cai (1306_CR6) 2018; 178
S Reich (1306_CR42) 2012; 568
1306_CR1
R Wang (1306_CR52) 2014; 411
G Fichera (1306_CR18) 1964; 7
GM Korpelevich (1306_CR29) 1976; 12
H Dehghan (1306_CR15) 2019
Y Censor (1306_CR8) 2011; 26
LM Bregman (1306_CR4) 1967; 7
A Taiwo (1306_CR46) 2020; 43
Y Censor (1306_CR7) 2011; 148
GN Ogwo (1306_CR36) 2020; 27
1306_CR51
1306_CR12
1306_CR13
1306_CR14
LO Jolaoso (1306_CR23) 2019
F Facchinei (1306_CR16) 2003
D Reem (1306_CR39) 2019; 182
LO Jolaoso (1306_CR26) 2019; 39
G Kassay (1306_CR28) 2011; 21
LO Jolaoso (1306_CR27) 2020; 185
AN Iusem (1306_CR21) 2001; 22
P Mishra (1306_CR32) 2019
K Nakajo (1306_CR33) 2015; 271
D Reem (1306_CR38) 2019; 68
C Chen (1306_CR11) 2015; 25
1306_CR40
1306_CR43
Y Censor (1306_CR9) 2012; 61
1306_CR45
S He (1306_CR20) 2018
1306_CR49
LO Jolaoso (1306_CR25) 2020
C Izuchukwu (1306_CR22) 2020
D Butnariu (1306_CR5) 2001; 7
LO Jolaoso (1306_CR24) 2019; 52
J Mashreghi (1306_CR31) 2010; 72
1306_CR30
1306_CR34
Y Su (1306_CR44) 2009; 71
A Gibali (1306_CR19) 2019; 68
A Taiwo (1306_CR48) 2020; 21
BT Polyak (1306_CR37) 1964; 4
S Reich (1306_CR41) 2010; 31
C Zălinescu (1306_CR50) 2002
AS Antipin (1306_CR3) 1976; 12
Y Censor (1306_CR10) 1996; 37
References_xml – reference: KorpelevichGMAn extragradient method for finding saddle points and for other problemsEkon. Mat. Metody1976127477564511210342.90044
– reference: GibaliAShehuYAn efficient iterative method for finding common fixed point and variational inequalities in Hilbert spacesOptimization2019681332390215410.1080/02331934.2018.1490417
– reference: ReichSSabachSTwo strong convergence theorems for a proximal method in reflexive Banach spacesNumer. Funct. Anal. Optim.2010312244267724310.1080/01630560903499852
– reference: JolaosoLOAlakoyaTOTaiwoAMewomoOTA parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problemsRend. Circ. Mat. Palermo201910.1007/s12215-019-00431-2
– reference: CensorYGibaliAReichSStrong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert spaceOptim. Meth. Softw.201126827845283780010.1080/10556788.2010.551536
– reference: PolyakBTSome methods of speeding up the convergence of iteration methodsUSSR Comput. Math. Math. Phys.1964411710.1016/0041-5553(64)90137-5
– reference: BregmanLMThe relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programmingUSSR Comput. Math. Math. Phys.19677320021721561710.1016/0041-5553(67)90040-7
– reference: CensorYReichSIterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimizationOptimization199637323339140264110.1080/02331939608844225
– reference: OgwoGNIzuchukwuCAremuKOMewomoOTA viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard spaceBull. Belg. Math. Soc. Simon Stevin2020271127152410270510.36045/bbms/1590199308
– reference: FicheraGProblemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contornoAtti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I VIII. Ser.19647911401786310146.21204
– reference: HeSWuTGibaliADongQLTotally relaxed, self-adaptive algorithm for solving variational inequalities over the intersection of sub-level setsOptimization2018387796110.1080/02331934.2018.14765151414.49009
– reference: MashreghiJNasriMForcing strong convergence of Korpelevich’s method in Banach spaces with its application in game theoryNonlinear Anal.20107220862099257760610.1016/j.na.2009.10.009
– reference: NaraghiradEYaoJCBregman weak relatively nonexpansive mappings in Banach spaceFixed Point Theory Appl.2013307283210.1186/1687-1812-2013-1411423.47046
– reference: Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems. Optimization (2020). https://doi.org/10.1080/02331934.2020.1723586
– reference: Reich,S., Sabach,S.: Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach Spaces. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer, New York, pp. 301–316 (2011)
– reference: Chen, J., Wan, Z., Yuan, L., Zheng, Y.: Approximation of fixed points of weak Bregman relatively nonexpansive mappings in Banach spaces. IJMMS, 2011, Art. ID 420192 (2011)
– reference: WangRHuangXTanDOn the numerical radius of Lipschitz operators in Banach spacesJ. Math. Anal. Appl.20144111118311846310.1016/j.jmaa.2013.08.054
– reference: FacchineiFPangJSFinite Dimensional Variational Inequalities and Complementarity Problems, Springer Series on Operations Research2003New YorkSpringer1062.90001
– reference: MishraPChattopadhyayJSinghRBhattacherjeeVConvergence of common solution of variational inequality and fixed point of a pseudocontractive mappingInnovations in Soft Computing and Information Technology2019SingaporeSpringer
– reference: JolaosoLOTaiwoAAlakoyaTOMewomoOTA self adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spacesDemonstr. Math.201952183203393833110.1515/dema-2019-0013
– reference: AntipinASOn a method for convex programs using a symmetrical modification of the Lagrange functionÈkonom. i Mat. Metody19761211641173
– reference: ZălinescuCConvex Analysis in General Vector Spaces2002River Edge, NJWorld Scientific Publishing10.1142/5021
– reference: Zheng, L.: A double projection algorithm for quasimonotone variational inequalities in Banach spaces. J. Inequal. Appl. 2018, Art. 256. http://doi.org/10.1186/s13660-018-1852-2 (2018)
– reference: JolaosoLOTaiwoAAlakoyaTOMewomoOTStrong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach spaceJ. Optim. Theory Appl.20201853744766411063610.1007/s10957-020-01672-3
– reference: Chidume, C.E., Nnakwe, M.O.: Convergence theorems of subgradient extragradient algorithm for solving variational inequalities and a convex feasibility problem. Fixed Point Theory Appl. 2018, Art. 16. https://doi.org/10.1186/s13663-018-0641-4 (2018)
– reference: JolaosoLOTaiwoAAlakoyaTOMewomoOTA unified algorithm for solving variational inequality and fixed point problems with application to the split equality problemComput. Appl. Math.201939138404071110.1007/s40314-019-1014-2
– reference: FicheraGSul problema elastostatico di Signorini con ambigue condizioni al contornoAtti Accad. Naz. Lincei VIII. Ser. Rend. Cl. Sci. Fis. Mat. Nat.1963341381421766610128.18305
– reference: Chidume, C.E., Ikechukwu, S.I., Adamu, A.: Inertial algorithm for approximating a common fixed point for a countable family of relatively nonexpansive maps. Fixed Point Theory Appl. 2018, Art. 9. https://doi.org/10.1186s/13663-018-0634-3 (2018)
– reference: IusemANOteroGInexact versions of proximal point and augmented Lagrangian algorithms in Banach spacesNumer. Funct. Anal. Optim.200122609640184957010.1081/NFA-100105310
– reference: KassayGReichSSabachSIterative methods for solving systems of variational inequalities in reflexive Banach spacesSIAM J. Optim.20112113191344285458610.1137/110820002
– reference: NakajoKStrong convergence for gradient projection method and relatively nonexpansive mappings in Banach spacesAppl. Math. Comput.201527125125834148011410.47031
– reference: JolaosoLOAlakoyaTOTaiwoAMewomoOTInertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert spaceOptimization202010.1080/02331934.2020.17167521438.65138
– reference: ReemDReichSDe PierroARBISTA: a telescopic Bregmanian proximal gradient method without the global Lipschitz continuity assumptionJ. Optim. Theory Appl.2019182851884398214010.1007/s10957-019-01509-8
– reference: Liu, Y.: Variational inequalities and optimization problems, Ph.D. thesis, University of Liverpool (2015)
– reference: Reich, S.: A weak convergence theorem for the alternating method with Bregman distances. In: Theory and Applications of Nonlinear Operators, pp. 313–318. Marcel Dekker, New York (1996)
– reference: ChenCMaSYangJA general inertial proximal point algorithm for mixed variational inequality problemSIAM J. Optim.201525421202142341359710.1137/140980910
– reference: TaiwoAJolaosoLOMewomoOTGeneral alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spacesRic. Mat.2020691235259409818310.1007/s11587-019-00460-0
– reference: CensorYGibaliAReichSThe subgradient extragradient method for solving variational inequalities in Hilbert spaceJ. Optim. Theory Appl.20111482318335278056610.1007/s10957-010-9757-3
– reference: ReemDReichSDe PierroARRe-examination of Bregman functions and new properties of their divergencesOptimization201968279348390216610.1080/02331934.2018.1543295
– reference: ButnariuDReichSZaslavskiAJAsymptotic behavior of relatively nonexpansive operators in Banach spacesJ. Appl. Anal.20017151174187580410.1515/JAA.2001.151
– reference: Thong, D.V., Hieu, D.V.: Modified Tseng’s extragradient algorithms for variational inequality problems. J. Fixed Point Theory Appl. 20, Art. 152. https://doi.org/10.1007/s11784-018-0634-2 (2018)
– reference: Taiwo, A., Jolaoso, L.O., Mewomo, O. T.: A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces. Comput. Appl. Math. 38(2), Art. 77 (2019)
– reference: CensorYGibaliAReichSExtensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean spaceOptimization20126111191132296612110.1080/02331934.2010.539689
– reference: IzuchukwuCOgwoGNMewomoOTAn inertial method for solving generalized split feasibility problems over the solution set of Monotone variational inclusionsOptimization202010.1080/02331934.2020.1808648
– reference: Naraghirad, E., Timnak, S.: Strong convergence theorems for Bregman W—mappings with applications to convex feasibility problems in Banach spaces. Fixed Point Theory Appl. 2015, Art. 149 (2015)
– reference: ReichSSabachSThree strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spacesContemp. Math.2012568225240290846210.1090/conm/568/11285
– reference: Abass, H.A., Aremu, K.O., Jolaoso, L.O., Mewomo, O.T.: An inertial forward-backward splitting method for approximating solutions of certain optimization problems. J. Nonlinear Funct. Anal. 2020, Art. ID 6 (2020)
– reference: CaiGGibaliAIyiolaOSShehuYA new double-projection method for solving variational inequalities in Banach spacesJ. Optim. Theory Appl.2018178219239381837010.1007/s10957-018-1228-2
– reference: TaiwoAJolaosoLOMewomoOTParallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problemsBull. Malays. Math. Sci. Soc.20204318931918406145810.1007/s40840-019-00781-1
– reference: SuYWangZXuHStrong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappingsNonlinear Analysis20097156165628256022910.1016/j.na.2009.04.053
– reference: DehghanHIzuchukwuCMewomoOTTabaDAUgwunnadiGCIterative algorithm for a family of monotone inclusion problems in CAT(0) spacesQuaest. Math.201910.2989/16073606.2019.1593255
– reference: TaiwoAJolaosoLOMewomoOTGibaliAOn generalized mixed equilibrium problem with α-β-μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -\beta -\mu $$\end{document} bifunction and μ-τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu -\tau $$\end{document} monotone mappingJ. Nonlinear Convex Anal.2020216138114014157378
– volume: 7
  start-page: 200
  issue: 3
  year: 1967
  ident: 1306_CR4
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– ident: 1306_CR1
  doi: 10.23952/jnfa.2020.6
– volume: 37
  start-page: 323
  year: 1996
  ident: 1306_CR10
  publication-title: Optimization
  doi: 10.1080/02331939608844225
– volume: 178
  start-page: 219
  year: 2018
  ident: 1306_CR6
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-1228-2
– ident: 1306_CR51
  doi: 10.1186/s13660-018-1852-2
– ident: 1306_CR45
  doi: 10.1007/s40314-019-0841-5
– volume: 27
  start-page: 127
  issue: 1
  year: 2020
  ident: 1306_CR36
  publication-title: Bull. Belg. Math. Soc. Simon Stevin
  doi: 10.36045/bbms/1590199308
– volume: 7
  start-page: 151
  year: 2001
  ident: 1306_CR5
  publication-title: J. Appl. Anal.
  doi: 10.1515/JAA.2001.151
– volume-title: Innovations in Soft Computing and Information Technology
  year: 2019
  ident: 1306_CR32
– volume: 26
  start-page: 827
  year: 2011
  ident: 1306_CR8
  publication-title: Optim. Meth. Softw.
  doi: 10.1080/10556788.2010.551536
– ident: 1306_CR43
– volume: 39
  start-page: 38
  issue: 1
  year: 2019
  ident: 1306_CR26
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-019-1014-2
– volume: 52
  start-page: 183
  year: 2019
  ident: 1306_CR24
  publication-title: Demonstr. Math.
  doi: 10.1515/dema-2019-0013
– year: 2020
  ident: 1306_CR25
  publication-title: Optimization
  doi: 10.1080/02331934.2020.1716752
– volume: 34
  start-page: 138
  year: 1963
  ident: 1306_CR17
  publication-title: Atti Accad. Naz. Lincei VIII. Ser. Rend. Cl. Sci. Fis. Mat. Nat.
– volume: 21
  start-page: 1319
  year: 2011
  ident: 1306_CR28
  publication-title: SIAM J. Optim.
  doi: 10.1137/110820002
– ident: 1306_CR14
  doi: 10.1186/s13663-018-0641-4
– volume: 31
  start-page: 22
  year: 2010
  ident: 1306_CR41
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630560903499852
– volume: 411
  start-page: 1
  issue: 1
  year: 2014
  ident: 1306_CR52
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.08.054
– year: 2013
  ident: 1306_CR35
  publication-title: Fixed Point Theory Appl.
  doi: 10.1186/1687-1812-2013-141
– volume-title: Convex Analysis in General Vector Spaces
  year: 2002
  ident: 1306_CR50
  doi: 10.1142/5021
– volume: 69
  start-page: 235
  issue: 1
  year: 2020
  ident: 1306_CR47
  publication-title: Ric. Mat.
  doi: 10.1007/s11587-019-00460-0
– volume: 148
  start-page: 318
  issue: 2
  year: 2011
  ident: 1306_CR7
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9757-3
– volume: 25
  start-page: 2120
  issue: 4
  year: 2015
  ident: 1306_CR11
  publication-title: SIAM J. Optim.
  doi: 10.1137/140980910
– ident: 1306_CR13
  doi: 10.1186/s13663-018-0634-3
– volume: 12
  start-page: 747
  year: 1976
  ident: 1306_CR29
  publication-title: Ekon. Mat. Metody
– volume: 71
  start-page: 5616
  year: 2009
  ident: 1306_CR44
  publication-title: Nonlinear Analysis
  doi: 10.1016/j.na.2009.04.053
– ident: 1306_CR30
– volume: 182
  start-page: 851
  year: 2019
  ident: 1306_CR39
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01509-8
– ident: 1306_CR2
  doi: 10.1080/02331934.2020.1723586
– year: 2018
  ident: 1306_CR20
  publication-title: Optimization
  doi: 10.1080/02331934.2018.1476515
– volume: 7
  start-page: 91
  year: 1964
  ident: 1306_CR18
  publication-title: Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I VIII. Ser.
– volume-title: Finite Dimensional Variational Inequalities and Complementarity Problems, Springer Series on Operations Research
  year: 2003
  ident: 1306_CR16
– volume: 271
  start-page: 251
  year: 2015
  ident: 1306_CR33
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.08.096
– ident: 1306_CR12
  doi: 10.1155/2011/420192
– volume: 4
  start-page: 1
  year: 1964
  ident: 1306_CR37
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– volume: 22
  start-page: 609
  year: 2001
  ident: 1306_CR21
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1081/NFA-100105310
– ident: 1306_CR34
  doi: 10.1186/s13663-015-0395-1
– volume: 61
  start-page: 1119
  year: 2012
  ident: 1306_CR9
  publication-title: Optimization
  doi: 10.1080/02331934.2010.539689
– volume: 68
  start-page: 13
  year: 2019
  ident: 1306_CR19
  publication-title: Optimization
  doi: 10.1080/02331934.2018.1490417
– volume: 568
  start-page: 225
  year: 2012
  ident: 1306_CR42
  publication-title: Contemp. Math.
  doi: 10.1090/conm/568/11285
– volume: 68
  start-page: 279
  year: 2019
  ident: 1306_CR38
  publication-title: Optimization
  doi: 10.1080/02331934.2018.1543295
– volume: 21
  start-page: 1381
  issue: 6
  year: 2020
  ident: 1306_CR48
  publication-title: J. Nonlinear Convex Anal.
– year: 2019
  ident: 1306_CR23
  publication-title: Rend. Circ. Mat. Palermo
  doi: 10.1007/s12215-019-00431-2
– ident: 1306_CR40
  doi: 10.1007/978-1-4419-9569-8_15
– volume: 72
  start-page: 2086
  year: 2010
  ident: 1306_CR31
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2009.10.009
– year: 2020
  ident: 1306_CR22
  publication-title: Optimization
  doi: 10.1080/02331934.2020.1808648
– volume: 185
  start-page: 744
  issue: 3
  year: 2020
  ident: 1306_CR27
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-020-01672-3
– year: 2019
  ident: 1306_CR15
  publication-title: Quaest. Math.
  doi: 10.2989/16073606.2019.1593255
– volume: 12
  start-page: 1164
  year: 1976
  ident: 1306_CR3
  publication-title: Èkonom. i Mat. Metody
– ident: 1306_CR49
  doi: 10.1007/s11784-018-0634-2
– volume: 43
  start-page: 1893
  year: 2020
  ident: 1306_CR46
  publication-title: Bull. Malays. Math. Sci. Soc.
  doi: 10.1007/s40840-019-00781-1
SSID ssj0052212
Score 2.4289017
Snippet In this paper, we study the problem of finding a common solution to variational inequality and fixed point problems for a countable family of Bregman weak...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Mathematics
Mathematics and Statistics
Title Fast and Simple Bregman Projection Methods for Solving Variational Inequalities and Related Problems in Banach Spaces
URI https://link.springer.com/article/10.1007/s00025-020-01306-0
Volume 75
WOSCitedRecordID wos000583024100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1420-9012
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0052212
  issn: 1422-6383
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9KAHv8X5RQ7etNC0WZMenTgU3BhWx24lTVMdzGysnX-_SfoBAxnoua-P8vKa9_17ADcBIzxhHnHcxJcOwSJztBnRuiyl4CR0EzexIK4vdDBg43E4rIbC8rrbvS5J2pu6GXZz7epVE-6YapuOgzdhS5s7ZhY2vEaj-v7VDkVZ4yQ6zNLa5VejMr_zWDVHq7VQa2J6-__7uAPYq1xKdF_qwCFsSHUEu_0GjzU_hmWP5wXiKkXRxMABo-5CfnxxhYZlIkYfDurbXdI50l4simZTk2hAIx1JV9lC9KxkOYGpY2vLyvbRydTwMDtpcjRRqMsVF58omptOrxN47z2-PTw51cIFR3ghLhzJMuxTzJnQXhihKaeeoBxTKTF3Kc10NMgCIjqhhwNBMi8JmORaCzIa4JQlzD-FlpopeQaIGGg0U_SjJCTmKQvS1KVm0FX6rJO1Addyj0WFRm6WYkzjBkfZijTWIo2tSGO3DbfNO_MSi2Mt9V19VHH1X-ZryM__Rn4BO545bdvYcgmtYrGUV7AtvotJvri2CvkDOrDXwg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-L8zINvWmjarEkfnTg23MZwc-ytpGmqg1nH2vn3m6QfMJCBPvd6lMs19_07gDuPER4yh1h26EqLYBFbyowoXZZScOLboR0aENcu7ffZZOIPiqGwtOx2L0uS5qauht1ss3pVhzu62qbi4E3YIspiacT81-G4vH-VQ5HXOIkKs5R2ucWozO88Vs3Rai3UmJjWwf8-7hD2C5cSPeY6cAQbMjmGvV6Fx5qewLLF0wzxJELDqYYDRs2FfP_kCRrkiRh1OKhndkmnSHmxaPg104kGNFaRdJEtRJ1E5hOYKrY2rEwfnYw0D72TJkXTBDV5wsUHGs51p9cpvLWeR09tq1i4YAnHx5klWYxdijkTygsjNOLUEZRjKiXmNqWxigaZR0TDd7AnSOyEHpNcaUFMPRyxkLlnUEu-EnkOiGhoNF30o8Qn-inzosimetBVuqwR1wGXcg9EgUaul2LMggpH2Yg0UCINjEgDuw731TvzHItjLfVDeVRB8V-ma8gv_kZ-CzvtUa8bdDv9l0vYdfTJmyaXK6hli6W8hm3xnU3TxY1Rzh9hDdqm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RfTBb3F-5sE3LWvarEkfnVocbmMwHXsraZrqYGZj7fz7TdIPHMhAfG4ayt2ld7_c3e8AuPEoZhF1sGVHrrAw4oml3IiyZSE4w74d2ZEhce2QXo-ORn7_Rxe_qXYvU5J5T4NmaZJZYxYnjarxzTZjWDX00Zk3hYnXwQbWhfQarw-G5b9YBRd5vhMryKUszS3aZn7fY9k1LedFjbsJ9v7_oftgtwg14X1uGwdgTchDsNOteFrTI7AIWJpBJmM4GGuaYNiai_dPJmE_v6BRSoNdM2M6hSq6hYPpRF9AwKFC2MUtImxLkXdmKsxttjL1dSLWe-hZNSkcS9hikvEPOJjpCrBj8BY8vT48W8UgBos7PsosQRPkEsQoV9EZJjEjDicMESEQswlJFEqkHuZN30Eex4kTeVQwZR0J8VBMI-qegJqcSnEKINaUaToZSLCP9VPqxbFNdAOscGkzqQNU6iDkBUu5HpYxCSt-ZSPSUIk0NCIN7Tq4rd6Z5RwdK1fflWoLi_Oarlh-9rfl12Cr_xiEnXbv5RxsO1rxpvblAtSy-UJcgk3-lY3T-ZWx0293i-OK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Simple+Bregman+Projection+Methods+for+Solving+Variational+Inequalities+and+Related+Problems+in+Banach+Spaces&rft.jtitle=Resultate+der+Mathematik&rft.au=Gibali%2C+Aviv&rft.au=Jolaoso%2C+Lateef+Olakunle&rft.au=Mewomo%2C+Oluwatosin+Temitope&rft.au=Taiwo%2C+Adeolu&rft.date=2020-12-01&rft.pub=Springer+International+Publishing&rft.issn=1422-6383&rft.eissn=1420-9012&rft.volume=75&rft.issue=4&rft_id=info:doi/10.1007%2Fs00025-020-01306-0&rft.externalDocID=10_1007_s00025_020_01306_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6383&client=summon