Fast and Simple Bregman Projection Methods for Solving Variational Inequalities and Related Problems in Banach Spaces
In this paper, we study the problem of finding a common solution to variational inequality and fixed point problems for a countable family of Bregman weak relatively nonexpansive mappings in real reflexive Banach spaces. Two inertial-type algorithms with adaptive step size rules for solving the prob...
Saved in:
| Published in: | Resultate der Mathematik Vol. 75; no. 4 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.12.2020
|
| Subjects: | |
| ISSN: | 1422-6383, 1420-9012 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we study the problem of finding a common solution to variational inequality and fixed point problems for a countable family of Bregman weak relatively nonexpansive mappings in real reflexive Banach spaces. Two inertial-type algorithms with adaptive step size rules for solving the problem are presented and their strong convergence theorems are established. The usage of the Bregman distances and the Armijo line search technique (which avoids the need to know a priori the Lipschitz constant of the involved operators), enable great flexibility of the proposed scheme, and besides their theoretical extensions, it might also have a practical potential. |
|---|---|
| AbstractList | In this paper, we study the problem of finding a common solution to variational inequality and fixed point problems for a countable family of Bregman weak relatively nonexpansive mappings in real reflexive Banach spaces. Two inertial-type algorithms with adaptive step size rules for solving the problem are presented and their strong convergence theorems are established. The usage of the Bregman distances and the Armijo line search technique (which avoids the need to know a priori the Lipschitz constant of the involved operators), enable great flexibility of the proposed scheme, and besides their theoretical extensions, it might also have a practical potential. |
| ArticleNumber | 179 |
| Author | Jolaoso, Lateef Olakunle Mewomo, Oluwatosin Temitope Gibali, Aviv Taiwo, Adeolu |
| Author_xml | – sequence: 1 givenname: Aviv orcidid: 0000-0002-2150-553X surname: Gibali fullname: Gibali, Aviv email: avivg@braude.ac.il organization: Department of Mathematics, ORT Braude College, The Center for Mathematics and Scientific Computation, University of Haifa – sequence: 2 givenname: Lateef Olakunle surname: Jolaoso fullname: Jolaoso, Lateef Olakunle organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, DSI-NRF Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) – sequence: 3 givenname: Oluwatosin Temitope surname: Mewomo fullname: Mewomo, Oluwatosin Temitope organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal – sequence: 4 givenname: Adeolu surname: Taiwo fullname: Taiwo, Adeolu organization: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal |
| BookMark | eNp9kMFOwzAMhiMEEmzwApzyAgU77ZrsCBODSUMgBlwrL3W3TF06kg6Jt6fbOHHYybas77f89cSpbzwLcY1wgwD6NgKAGiSgIAFMIU_gRFxg1o1DQHW671WSpyY9F70YVwADpVBdiO2YYivJl3Lm1pua5X3gxZq8fA3Nim3rGi-fuV02ZZRVE-Ssqb-dX8hPCo52W6rlxPPXlmrXOo77qDeuqeVylzGveR2l8_KePNmlnG3IcrwUZxXVka_-al98jB_eR0_J9OVxMrqbJlYNsU3YVJhqJGMRVaZL0spqQs2MBFpXaDKTZ3YwVJjbrFLz3DDxnCudY2nmJu0Ldci1oYkxcFVsgltT-CkQip244iCu6MQVe3EFdJD5B1nX7n9tA7n6OJoe0Njd8QsOxarZhs5RPEb9AhelhYw |
| CitedBy_id | crossref_primary_10_1007_s41478_025_00896_8 crossref_primary_10_1007_s00009_023_02535_7 crossref_primary_10_1080_02331934_2021_1895154 crossref_primary_10_2989_16073606_2024_2327562 crossref_primary_10_1007_s40314_022_02006_x crossref_primary_10_1007_s11067_024_09615_5 crossref_primary_10_1080_02331934_2024_2377241 crossref_primary_10_1007_s10915_025_02994_y crossref_primary_10_1007_s10915_024_02784_y crossref_primary_10_1007_s40314_024_02829_w crossref_primary_10_1007_s12215_023_00978_1 crossref_primary_10_1007_s11587_021_00624_x crossref_primary_10_3390_math13121962 crossref_primary_10_1007_s40314_023_02499_0 crossref_primary_10_1007_s10957_023_02320_2 crossref_primary_10_1007_s11075_021_01170_1 crossref_primary_10_1186_s13660_023_03043_8 crossref_primary_10_1007_s10440_024_00678_7 crossref_primary_10_1515_cmam_2020_0174 crossref_primary_10_1007_s40590_021_00340_4 crossref_primary_10_1080_02331934_2024_2347967 crossref_primary_10_1007_s10114_024_2594_3 crossref_primary_10_1007_s10013_024_00710_1 crossref_primary_10_3390_axioms10010016 crossref_primary_10_1007_s40314_023_02244_7 crossref_primary_10_1007_s00186_023_00846_9 crossref_primary_10_1002_mma_9479 crossref_primary_10_1007_s10473_022_0501_5 crossref_primary_10_1007_s10915_021_01670_1 crossref_primary_10_1007_s12215_024_01022_6 crossref_primary_10_1007_s40306_023_00521_5 crossref_primary_10_1007_s11565_020_00354_2 crossref_primary_10_3390_axioms9040143 crossref_primary_10_1080_02331934_2022_2123705 crossref_primary_10_1007_s12215_022_00853_5 |
| Cites_doi | 10.1016/0041-5553(67)90040-7 10.23952/jnfa.2020.6 10.1080/02331939608844225 10.1007/s10957-018-1228-2 10.1186/s13660-018-1852-2 10.1007/s40314-019-0841-5 10.36045/bbms/1590199308 10.1515/JAA.2001.151 10.1080/10556788.2010.551536 10.1007/s40314-019-1014-2 10.1515/dema-2019-0013 10.1080/02331934.2020.1716752 10.1137/110820002 10.1186/s13663-018-0641-4 10.1080/01630560903499852 10.1016/j.jmaa.2013.08.054 10.1186/1687-1812-2013-141 10.1142/5021 10.1007/s11587-019-00460-0 10.1007/s10957-010-9757-3 10.1137/140980910 10.1186/s13663-018-0634-3 10.1016/j.na.2009.04.053 10.1007/s10957-019-01509-8 10.1080/02331934.2020.1723586 10.1080/02331934.2018.1476515 10.1016/j.amc.2015.08.096 10.1155/2011/420192 10.1016/0041-5553(64)90137-5 10.1081/NFA-100105310 10.1186/s13663-015-0395-1 10.1080/02331934.2010.539689 10.1080/02331934.2018.1490417 10.1090/conm/568/11285 10.1080/02331934.2018.1543295 10.1007/s12215-019-00431-2 10.1007/978-1-4419-9569-8_15 10.1016/j.na.2009.10.009 10.1080/02331934.2020.1808648 10.1007/s10957-020-01672-3 10.2989/16073606.2019.1593255 10.1007/s11784-018-0634-2 10.1007/s40840-019-00781-1 |
| ContentType | Journal Article |
| Copyright | Springer Nature Switzerland AG 2020 |
| Copyright_xml | – notice: Springer Nature Switzerland AG 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00025-020-01306-0 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1420-9012 |
| ExternalDocumentID | 10_1007_s00025_020_01306_0 |
| GrantInformation_xml | – fundername: International Mathematical Union (IMU) Breakout Graduate Fellowship Award – fundername: National Research Foundation (NRF) |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29P 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PT4 QOS R89 R9I RHV RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YNT Z45 ZMTXR ZWQNP ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- M2P PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c291t-e8f1371a8c11247da72c7a17ee1a077f184864c59216c4f2b68eaebef761d8b83 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000583024100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1422-6383 |
| IngestDate | Sat Nov 29 03:47:24 EST 2025 Tue Nov 18 22:12:02 EST 2025 Fri Feb 21 02:37:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Bregman weak relatively nonexpansive mappings 47H10 90C33 Variational inequality problem Banach spaces 47J25 47N10 inertial-type algorithm 65J15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-e8f1371a8c11247da72c7a17ee1a077f184864c59216c4f2b68eaebef761d8b83 |
| ORCID | 0000-0002-2150-553X |
| ParticipantIDs | crossref_primary_10_1007_s00025_020_01306_0 crossref_citationtrail_10_1007_s00025_020_01306_0 springer_journals_10_1007_s00025_020_01306_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20201200 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationSubtitle | Resultate der Mathematik |
| PublicationTitle | Resultate der Mathematik |
| PublicationTitleAbbrev | Results Math |
| PublicationYear | 2020 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| References | TaiwoAJolaosoLOMewomoOTGibaliAOn generalized mixed equilibrium problem with α-β-μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -\beta -\mu $$\end{document} bifunction and μ-τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu -\tau $$\end{document} monotone mappingJ. Nonlinear Convex Anal.2020216138114014157378 NaraghiradEYaoJCBregman weak relatively nonexpansive mappings in Banach spaceFixed Point Theory Appl.2013307283210.1186/1687-1812-2013-1411423.47046 Taiwo, A., Jolaoso, L.O., Mewomo, O. T.: A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces. Comput. Appl. Math. 38(2), Art. 77 (2019) ReemDReichSDe PierroARRe-examination of Bregman functions and new properties of their divergencesOptimization201968279348390216610.1080/02331934.2018.1543295 PolyakBTSome methods of speeding up the convergence of iteration methodsUSSR Comput. Math. Math. Phys.1964411710.1016/0041-5553(64)90137-5 ReemDReichSDe PierroARBISTA: a telescopic Bregmanian proximal gradient method without the global Lipschitz continuity assumptionJ. Optim. Theory Appl.2019182851884398214010.1007/s10957-019-01509-8 IusemANOteroGInexact versions of proximal point and augmented Lagrangian algorithms in Banach spacesNumer. Funct. Anal. Optim.200122609640184957010.1081/NFA-100105310 CensorYReichSIterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimizationOptimization199637323339140264110.1080/02331939608844225 ReichSSabachSTwo strong convergence theorems for a proximal method in reflexive Banach spacesNumer. Funct. Anal. Optim.2010312244267724310.1080/01630560903499852 Chidume, C.E., Nnakwe, M.O.: Convergence theorems of subgradient extragradient algorithm for solving variational inequalities and a convex feasibility problem. Fixed Point Theory Appl. 2018, Art. 16. https://doi.org/10.1186/s13663-018-0641-4 (2018) ZălinescuCConvex Analysis in General Vector Spaces2002River Edge, NJWorld Scientific Publishing10.1142/5021 KorpelevichGMAn extragradient method for finding saddle points and for other problemsEkon. Mat. Metody1976127477564511210342.90044 SuYWangZXuHStrong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappingsNonlinear Analysis20097156165628256022910.1016/j.na.2009.04.053 JolaosoLOTaiwoAAlakoyaTOMewomoOTA unified algorithm for solving variational inequality and fixed point problems with application to the split equality problemComput. Appl. Math.201939138404071110.1007/s40314-019-1014-2 ChenCMaSYangJA general inertial proximal point algorithm for mixed variational inequality problemSIAM J. Optim.201525421202142341359710.1137/140980910 BregmanLMThe relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programmingUSSR Comput. Math. Math. Phys.19677320021721561710.1016/0041-5553(67)90040-7 HeSWuTGibaliADongQLTotally relaxed, self-adaptive algorithm for solving variational inequalities over the intersection of sub-level setsOptimization2018387796110.1080/02331934.2018.14765151414.49009 Naraghirad, E., Timnak, S.: Strong convergence theorems for Bregman W—mappings with applications to convex feasibility problems in Banach spaces. Fixed Point Theory Appl. 2015, Art. 149 (2015) CensorYGibaliAReichSStrong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert spaceOptim. Meth. Softw.201126827845283780010.1080/10556788.2010.551536 IzuchukwuCOgwoGNMewomoOTAn inertial method for solving generalized split feasibility problems over the solution set of Monotone variational inclusionsOptimization202010.1080/02331934.2020.1808648 ButnariuDReichSZaslavskiAJAsymptotic behavior of relatively nonexpansive operators in Banach spacesJ. Appl. Anal.20017151174187580410.1515/JAA.2001.151 MashreghiJNasriMForcing strong convergence of Korpelevich’s method in Banach spaces with its application in game theoryNonlinear Anal.20107220862099257760610.1016/j.na.2009.10.009 GibaliAShehuYAn efficient iterative method for finding common fixed point and variational inequalities in Hilbert spacesOptimization2019681332390215410.1080/02331934.2018.1490417 OgwoGNIzuchukwuCAremuKOMewomoOTA viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard spaceBull. Belg. Math. Soc. Simon Stevin2020271127152410270510.36045/bbms/1590199308 FicheraGSul problema elastostatico di Signorini con ambigue condizioni al contornoAtti Accad. Naz. Lincei VIII. Ser. Rend. Cl. Sci. Fis. Mat. Nat.1963341381421766610128.18305 CensorYGibaliAReichSExtensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean spaceOptimization20126111191132296612110.1080/02331934.2010.539689 Chidume, C.E., Ikechukwu, S.I., Adamu, A.: Inertial algorithm for approximating a common fixed point for a countable family of relatively nonexpansive maps. Fixed Point Theory Appl. 2018, Art. 9. https://doi.org/10.1186s/13663-018-0634-3 (2018) FacchineiFPangJSFinite Dimensional Variational Inequalities and Complementarity Problems, Springer Series on Operations Research2003New YorkSpringer1062.90001 Zheng, L.: A double projection algorithm for quasimonotone variational inequalities in Banach spaces. J. Inequal. Appl. 2018, Art. 256. http://doi.org/10.1186/s13660-018-1852-2 (2018) DehghanHIzuchukwuCMewomoOTTabaDAUgwunnadiGCIterative algorithm for a family of monotone inclusion problems in CAT(0) spacesQuaest. Math.201910.2989/16073606.2019.1593255 Chen, J., Wan, Z., Yuan, L., Zheng, Y.: Approximation of fixed points of weak Bregman relatively nonexpansive mappings in Banach spaces. IJMMS, 2011, Art. ID 420192 (2011) Reich,S., Sabach,S.: Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach Spaces. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer, New York, pp. 301–316 (2011) FicheraGProblemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contornoAtti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I VIII. Ser.19647911401786310146.21204 Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems. Optimization (2020). https://doi.org/10.1080/02331934.2020.1723586 NakajoKStrong convergence for gradient projection method and relatively nonexpansive mappings in Banach spacesAppl. Math. Comput.201527125125834148011410.47031 JolaosoLOAlakoyaTOTaiwoAMewomoOTA parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problemsRend. Circ. Mat. Palermo201910.1007/s12215-019-00431-2 JolaosoLOAlakoyaTOTaiwoAMewomoOTInertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert spaceOptimization202010.1080/02331934.2020.17167521438.65138 ReichSSabachSThree strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spacesContemp. Math.2012568225240290846210.1090/conm/568/11285 CaiGGibaliAIyiolaOSShehuYA new double-projection method for solving variational inequalities in Banach spacesJ. Optim. Theory Appl.2018178219239381837010.1007/s10957-018-1228-2 TaiwoAJolaosoLOMewomoOTGeneral alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spacesRic. Mat.2020691235259409818310.1007/s11587-019-00460-0 Abass, H.A., Aremu, K.O., Jolaoso, L.O., Mewomo, O.T.: An inertial forward-backward splitting method for approximating solutions of certain optimization problems. J. Nonlinear Funct. Anal. 2020, Art. ID 6 (2020) Liu, Y.: Variational inequalities and optimization problems, Ph.D. thesis, University of Liverpool (2015) Thong, D.V., Hieu, D.V.: Modified Tseng’s extragradient algorithms for variational inequality problems. J. Fixed Point Theory Appl. 20, Art. 152. https://doi.org/10.1007/s11784-018-0634-2 (2018) TaiwoAJolaosoLOMewomoOTParallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problemsBull. Malays. Math. Sci. Soc.20204318931918406145810.1007/s40840-019-00781-1 MishraPChattopadhyayJSinghRBhattacherjeeVConvergence of common solution of variational inequality and fixed point of a pseudocontractive mappingInnovations in Soft Computing and Information Technology2019SingaporeSpringer JolaosoLOTaiwoAAlakoyaTOMewomoOTA self adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spacesDemonstr. Math.201952183203393833110.1515/dema-2019-0013 CensorYGibaliAReichSThe subgradient extragradient method for solving variational inequalities in Hilbert spaceJ. Optim. Theory Appl.20111482318335278056610.1007/s10957-010-9757-3 JolaosoLOTaiwoAAlakoyaTOMewomoOTStrong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach spaceJ. Optim. Theory Appl.20201853744766411063610.1007/s10957-020-01672-3 KassayGReichSSabachSIterative methods for solving systems of variational inequalities in reflexive Banach spacesSIAM J. Optim.20112113191344285458610.1137/110820002 WangRHuangXTanDOn the numerical radius of Lipschitz operators in Banach spacesJ. Math. Anal. Appl.20144111118311846310.1016/j.jmaa.2013.08.054 AntipinASOn a method for convex programs using a symmetrical modification of the E Naraghirad (1306_CR35) 2013 A Taiwo (1306_CR47) 2020; 69 G Fichera (1306_CR17) 1963; 34 1306_CR2 G Cai (1306_CR6) 2018; 178 S Reich (1306_CR42) 2012; 568 1306_CR1 R Wang (1306_CR52) 2014; 411 G Fichera (1306_CR18) 1964; 7 GM Korpelevich (1306_CR29) 1976; 12 H Dehghan (1306_CR15) 2019 Y Censor (1306_CR8) 2011; 26 LM Bregman (1306_CR4) 1967; 7 A Taiwo (1306_CR46) 2020; 43 Y Censor (1306_CR7) 2011; 148 GN Ogwo (1306_CR36) 2020; 27 1306_CR51 1306_CR12 1306_CR13 1306_CR14 LO Jolaoso (1306_CR23) 2019 F Facchinei (1306_CR16) 2003 D Reem (1306_CR39) 2019; 182 LO Jolaoso (1306_CR26) 2019; 39 G Kassay (1306_CR28) 2011; 21 LO Jolaoso (1306_CR27) 2020; 185 AN Iusem (1306_CR21) 2001; 22 P Mishra (1306_CR32) 2019 K Nakajo (1306_CR33) 2015; 271 D Reem (1306_CR38) 2019; 68 C Chen (1306_CR11) 2015; 25 1306_CR40 1306_CR43 Y Censor (1306_CR9) 2012; 61 1306_CR45 S He (1306_CR20) 2018 1306_CR49 LO Jolaoso (1306_CR25) 2020 C Izuchukwu (1306_CR22) 2020 D Butnariu (1306_CR5) 2001; 7 LO Jolaoso (1306_CR24) 2019; 52 J Mashreghi (1306_CR31) 2010; 72 1306_CR30 1306_CR34 Y Su (1306_CR44) 2009; 71 A Gibali (1306_CR19) 2019; 68 A Taiwo (1306_CR48) 2020; 21 BT Polyak (1306_CR37) 1964; 4 S Reich (1306_CR41) 2010; 31 C Zălinescu (1306_CR50) 2002 AS Antipin (1306_CR3) 1976; 12 Y Censor (1306_CR10) 1996; 37 |
| References_xml | – reference: KorpelevichGMAn extragradient method for finding saddle points and for other problemsEkon. Mat. Metody1976127477564511210342.90044 – reference: GibaliAShehuYAn efficient iterative method for finding common fixed point and variational inequalities in Hilbert spacesOptimization2019681332390215410.1080/02331934.2018.1490417 – reference: ReichSSabachSTwo strong convergence theorems for a proximal method in reflexive Banach spacesNumer. Funct. Anal. Optim.2010312244267724310.1080/01630560903499852 – reference: JolaosoLOAlakoyaTOTaiwoAMewomoOTA parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problemsRend. Circ. Mat. Palermo201910.1007/s12215-019-00431-2 – reference: CensorYGibaliAReichSStrong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert spaceOptim. Meth. Softw.201126827845283780010.1080/10556788.2010.551536 – reference: PolyakBTSome methods of speeding up the convergence of iteration methodsUSSR Comput. Math. Math. Phys.1964411710.1016/0041-5553(64)90137-5 – reference: BregmanLMThe relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programmingUSSR Comput. Math. Math. Phys.19677320021721561710.1016/0041-5553(67)90040-7 – reference: CensorYReichSIterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimizationOptimization199637323339140264110.1080/02331939608844225 – reference: OgwoGNIzuchukwuCAremuKOMewomoOTA viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard spaceBull. Belg. Math. Soc. Simon Stevin2020271127152410270510.36045/bbms/1590199308 – reference: FicheraGProblemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contornoAtti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I VIII. Ser.19647911401786310146.21204 – reference: HeSWuTGibaliADongQLTotally relaxed, self-adaptive algorithm for solving variational inequalities over the intersection of sub-level setsOptimization2018387796110.1080/02331934.2018.14765151414.49009 – reference: MashreghiJNasriMForcing strong convergence of Korpelevich’s method in Banach spaces with its application in game theoryNonlinear Anal.20107220862099257760610.1016/j.na.2009.10.009 – reference: NaraghiradEYaoJCBregman weak relatively nonexpansive mappings in Banach spaceFixed Point Theory Appl.2013307283210.1186/1687-1812-2013-1411423.47046 – reference: Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems. Optimization (2020). https://doi.org/10.1080/02331934.2020.1723586 – reference: Reich,S., Sabach,S.: Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach Spaces. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer, New York, pp. 301–316 (2011) – reference: Chen, J., Wan, Z., Yuan, L., Zheng, Y.: Approximation of fixed points of weak Bregman relatively nonexpansive mappings in Banach spaces. IJMMS, 2011, Art. ID 420192 (2011) – reference: WangRHuangXTanDOn the numerical radius of Lipschitz operators in Banach spacesJ. Math. Anal. Appl.20144111118311846310.1016/j.jmaa.2013.08.054 – reference: FacchineiFPangJSFinite Dimensional Variational Inequalities and Complementarity Problems, Springer Series on Operations Research2003New YorkSpringer1062.90001 – reference: MishraPChattopadhyayJSinghRBhattacherjeeVConvergence of common solution of variational inequality and fixed point of a pseudocontractive mappingInnovations in Soft Computing and Information Technology2019SingaporeSpringer – reference: JolaosoLOTaiwoAAlakoyaTOMewomoOTA self adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spacesDemonstr. Math.201952183203393833110.1515/dema-2019-0013 – reference: AntipinASOn a method for convex programs using a symmetrical modification of the Lagrange functionÈkonom. i Mat. Metody19761211641173 – reference: ZălinescuCConvex Analysis in General Vector Spaces2002River Edge, NJWorld Scientific Publishing10.1142/5021 – reference: Zheng, L.: A double projection algorithm for quasimonotone variational inequalities in Banach spaces. J. Inequal. Appl. 2018, Art. 256. http://doi.org/10.1186/s13660-018-1852-2 (2018) – reference: JolaosoLOTaiwoAAlakoyaTOMewomoOTStrong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach spaceJ. Optim. Theory Appl.20201853744766411063610.1007/s10957-020-01672-3 – reference: Chidume, C.E., Nnakwe, M.O.: Convergence theorems of subgradient extragradient algorithm for solving variational inequalities and a convex feasibility problem. Fixed Point Theory Appl. 2018, Art. 16. https://doi.org/10.1186/s13663-018-0641-4 (2018) – reference: JolaosoLOTaiwoAAlakoyaTOMewomoOTA unified algorithm for solving variational inequality and fixed point problems with application to the split equality problemComput. Appl. Math.201939138404071110.1007/s40314-019-1014-2 – reference: FicheraGSul problema elastostatico di Signorini con ambigue condizioni al contornoAtti Accad. Naz. Lincei VIII. Ser. Rend. Cl. Sci. Fis. Mat. Nat.1963341381421766610128.18305 – reference: Chidume, C.E., Ikechukwu, S.I., Adamu, A.: Inertial algorithm for approximating a common fixed point for a countable family of relatively nonexpansive maps. Fixed Point Theory Appl. 2018, Art. 9. https://doi.org/10.1186s/13663-018-0634-3 (2018) – reference: IusemANOteroGInexact versions of proximal point and augmented Lagrangian algorithms in Banach spacesNumer. Funct. Anal. Optim.200122609640184957010.1081/NFA-100105310 – reference: KassayGReichSSabachSIterative methods for solving systems of variational inequalities in reflexive Banach spacesSIAM J. Optim.20112113191344285458610.1137/110820002 – reference: NakajoKStrong convergence for gradient projection method and relatively nonexpansive mappings in Banach spacesAppl. Math. Comput.201527125125834148011410.47031 – reference: JolaosoLOAlakoyaTOTaiwoAMewomoOTInertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert spaceOptimization202010.1080/02331934.2020.17167521438.65138 – reference: ReemDReichSDe PierroARBISTA: a telescopic Bregmanian proximal gradient method without the global Lipschitz continuity assumptionJ. Optim. Theory Appl.2019182851884398214010.1007/s10957-019-01509-8 – reference: Liu, Y.: Variational inequalities and optimization problems, Ph.D. thesis, University of Liverpool (2015) – reference: Reich, S.: A weak convergence theorem for the alternating method with Bregman distances. In: Theory and Applications of Nonlinear Operators, pp. 313–318. Marcel Dekker, New York (1996) – reference: ChenCMaSYangJA general inertial proximal point algorithm for mixed variational inequality problemSIAM J. Optim.201525421202142341359710.1137/140980910 – reference: TaiwoAJolaosoLOMewomoOTGeneral alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spacesRic. Mat.2020691235259409818310.1007/s11587-019-00460-0 – reference: CensorYGibaliAReichSThe subgradient extragradient method for solving variational inequalities in Hilbert spaceJ. Optim. Theory Appl.20111482318335278056610.1007/s10957-010-9757-3 – reference: ReemDReichSDe PierroARRe-examination of Bregman functions and new properties of their divergencesOptimization201968279348390216610.1080/02331934.2018.1543295 – reference: ButnariuDReichSZaslavskiAJAsymptotic behavior of relatively nonexpansive operators in Banach spacesJ. Appl. Anal.20017151174187580410.1515/JAA.2001.151 – reference: Thong, D.V., Hieu, D.V.: Modified Tseng’s extragradient algorithms for variational inequality problems. J. Fixed Point Theory Appl. 20, Art. 152. https://doi.org/10.1007/s11784-018-0634-2 (2018) – reference: Taiwo, A., Jolaoso, L.O., Mewomo, O. T.: A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces. Comput. Appl. Math. 38(2), Art. 77 (2019) – reference: CensorYGibaliAReichSExtensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean spaceOptimization20126111191132296612110.1080/02331934.2010.539689 – reference: IzuchukwuCOgwoGNMewomoOTAn inertial method for solving generalized split feasibility problems over the solution set of Monotone variational inclusionsOptimization202010.1080/02331934.2020.1808648 – reference: Naraghirad, E., Timnak, S.: Strong convergence theorems for Bregman W—mappings with applications to convex feasibility problems in Banach spaces. Fixed Point Theory Appl. 2015, Art. 149 (2015) – reference: ReichSSabachSThree strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spacesContemp. Math.2012568225240290846210.1090/conm/568/11285 – reference: Abass, H.A., Aremu, K.O., Jolaoso, L.O., Mewomo, O.T.: An inertial forward-backward splitting method for approximating solutions of certain optimization problems. J. Nonlinear Funct. Anal. 2020, Art. ID 6 (2020) – reference: CaiGGibaliAIyiolaOSShehuYA new double-projection method for solving variational inequalities in Banach spacesJ. Optim. Theory Appl.2018178219239381837010.1007/s10957-018-1228-2 – reference: TaiwoAJolaosoLOMewomoOTParallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problemsBull. Malays. Math. Sci. Soc.20204318931918406145810.1007/s40840-019-00781-1 – reference: SuYWangZXuHStrong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappingsNonlinear Analysis20097156165628256022910.1016/j.na.2009.04.053 – reference: DehghanHIzuchukwuCMewomoOTTabaDAUgwunnadiGCIterative algorithm for a family of monotone inclusion problems in CAT(0) spacesQuaest. Math.201910.2989/16073606.2019.1593255 – reference: TaiwoAJolaosoLOMewomoOTGibaliAOn generalized mixed equilibrium problem with α-β-μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -\beta -\mu $$\end{document} bifunction and μ-τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu -\tau $$\end{document} monotone mappingJ. Nonlinear Convex Anal.2020216138114014157378 – volume: 7 start-page: 200 issue: 3 year: 1967 ident: 1306_CR4 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(67)90040-7 – ident: 1306_CR1 doi: 10.23952/jnfa.2020.6 – volume: 37 start-page: 323 year: 1996 ident: 1306_CR10 publication-title: Optimization doi: 10.1080/02331939608844225 – volume: 178 start-page: 219 year: 2018 ident: 1306_CR6 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-018-1228-2 – ident: 1306_CR51 doi: 10.1186/s13660-018-1852-2 – ident: 1306_CR45 doi: 10.1007/s40314-019-0841-5 – volume: 27 start-page: 127 issue: 1 year: 2020 ident: 1306_CR36 publication-title: Bull. Belg. Math. Soc. Simon Stevin doi: 10.36045/bbms/1590199308 – volume: 7 start-page: 151 year: 2001 ident: 1306_CR5 publication-title: J. Appl. Anal. doi: 10.1515/JAA.2001.151 – volume-title: Innovations in Soft Computing and Information Technology year: 2019 ident: 1306_CR32 – volume: 26 start-page: 827 year: 2011 ident: 1306_CR8 publication-title: Optim. Meth. Softw. doi: 10.1080/10556788.2010.551536 – ident: 1306_CR43 – volume: 39 start-page: 38 issue: 1 year: 2019 ident: 1306_CR26 publication-title: Comput. Appl. Math. doi: 10.1007/s40314-019-1014-2 – volume: 52 start-page: 183 year: 2019 ident: 1306_CR24 publication-title: Demonstr. Math. doi: 10.1515/dema-2019-0013 – year: 2020 ident: 1306_CR25 publication-title: Optimization doi: 10.1080/02331934.2020.1716752 – volume: 34 start-page: 138 year: 1963 ident: 1306_CR17 publication-title: Atti Accad. Naz. Lincei VIII. Ser. Rend. Cl. Sci. Fis. Mat. Nat. – volume: 21 start-page: 1319 year: 2011 ident: 1306_CR28 publication-title: SIAM J. Optim. doi: 10.1137/110820002 – ident: 1306_CR14 doi: 10.1186/s13663-018-0641-4 – volume: 31 start-page: 22 year: 2010 ident: 1306_CR41 publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630560903499852 – volume: 411 start-page: 1 issue: 1 year: 2014 ident: 1306_CR52 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2013.08.054 – year: 2013 ident: 1306_CR35 publication-title: Fixed Point Theory Appl. doi: 10.1186/1687-1812-2013-141 – volume-title: Convex Analysis in General Vector Spaces year: 2002 ident: 1306_CR50 doi: 10.1142/5021 – volume: 69 start-page: 235 issue: 1 year: 2020 ident: 1306_CR47 publication-title: Ric. Mat. doi: 10.1007/s11587-019-00460-0 – volume: 148 start-page: 318 issue: 2 year: 2011 ident: 1306_CR7 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-010-9757-3 – volume: 25 start-page: 2120 issue: 4 year: 2015 ident: 1306_CR11 publication-title: SIAM J. Optim. doi: 10.1137/140980910 – ident: 1306_CR13 doi: 10.1186/s13663-018-0634-3 – volume: 12 start-page: 747 year: 1976 ident: 1306_CR29 publication-title: Ekon. Mat. Metody – volume: 71 start-page: 5616 year: 2009 ident: 1306_CR44 publication-title: Nonlinear Analysis doi: 10.1016/j.na.2009.04.053 – ident: 1306_CR30 – volume: 182 start-page: 851 year: 2019 ident: 1306_CR39 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-019-01509-8 – ident: 1306_CR2 doi: 10.1080/02331934.2020.1723586 – year: 2018 ident: 1306_CR20 publication-title: Optimization doi: 10.1080/02331934.2018.1476515 – volume: 7 start-page: 91 year: 1964 ident: 1306_CR18 publication-title: Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I VIII. Ser. – volume-title: Finite Dimensional Variational Inequalities and Complementarity Problems, Springer Series on Operations Research year: 2003 ident: 1306_CR16 – volume: 271 start-page: 251 year: 2015 ident: 1306_CR33 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.08.096 – ident: 1306_CR12 doi: 10.1155/2011/420192 – volume: 4 start-page: 1 year: 1964 ident: 1306_CR37 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(64)90137-5 – volume: 22 start-page: 609 year: 2001 ident: 1306_CR21 publication-title: Numer. Funct. Anal. Optim. doi: 10.1081/NFA-100105310 – ident: 1306_CR34 doi: 10.1186/s13663-015-0395-1 – volume: 61 start-page: 1119 year: 2012 ident: 1306_CR9 publication-title: Optimization doi: 10.1080/02331934.2010.539689 – volume: 68 start-page: 13 year: 2019 ident: 1306_CR19 publication-title: Optimization doi: 10.1080/02331934.2018.1490417 – volume: 568 start-page: 225 year: 2012 ident: 1306_CR42 publication-title: Contemp. Math. doi: 10.1090/conm/568/11285 – volume: 68 start-page: 279 year: 2019 ident: 1306_CR38 publication-title: Optimization doi: 10.1080/02331934.2018.1543295 – volume: 21 start-page: 1381 issue: 6 year: 2020 ident: 1306_CR48 publication-title: J. Nonlinear Convex Anal. – year: 2019 ident: 1306_CR23 publication-title: Rend. Circ. Mat. Palermo doi: 10.1007/s12215-019-00431-2 – ident: 1306_CR40 doi: 10.1007/978-1-4419-9569-8_15 – volume: 72 start-page: 2086 year: 2010 ident: 1306_CR31 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2009.10.009 – year: 2020 ident: 1306_CR22 publication-title: Optimization doi: 10.1080/02331934.2020.1808648 – volume: 185 start-page: 744 issue: 3 year: 2020 ident: 1306_CR27 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-020-01672-3 – year: 2019 ident: 1306_CR15 publication-title: Quaest. Math. doi: 10.2989/16073606.2019.1593255 – volume: 12 start-page: 1164 year: 1976 ident: 1306_CR3 publication-title: Èkonom. i Mat. Metody – ident: 1306_CR49 doi: 10.1007/s11784-018-0634-2 – volume: 43 start-page: 1893 year: 2020 ident: 1306_CR46 publication-title: Bull. Malays. Math. Sci. Soc. doi: 10.1007/s40840-019-00781-1 |
| SSID | ssj0052212 |
| Score | 2.4289017 |
| Snippet | In this paper, we study the problem of finding a common solution to variational inequality and fixed point problems for a countable family of Bregman weak... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| SubjectTerms | Mathematics Mathematics and Statistics |
| Title | Fast and Simple Bregman Projection Methods for Solving Variational Inequalities and Related Problems in Banach Spaces |
| URI | https://link.springer.com/article/10.1007/s00025-020-01306-0 |
| Volume | 75 |
| WOSCitedRecordID | wos000583024100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 1420-9012 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0052212 issn: 1422-6383 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9KAHv8X5RQ7etNC0WZMenTgU3BhWx24lTVMdzGysnX-_SfoBAxnoua-P8vKa9_17ADcBIzxhHnHcxJcOwSJztBnRuiyl4CR0EzexIK4vdDBg43E4rIbC8rrbvS5J2pu6GXZz7epVE-6YapuOgzdhS5s7ZhY2vEaj-v7VDkVZ4yQ6zNLa5VejMr_zWDVHq7VQa2J6-__7uAPYq1xKdF_qwCFsSHUEu_0GjzU_hmWP5wXiKkXRxMABo-5CfnxxhYZlIkYfDurbXdI50l4simZTk2hAIx1JV9lC9KxkOYGpY2vLyvbRydTwMDtpcjRRqMsVF58omptOrxN47z2-PTw51cIFR3ghLhzJMuxTzJnQXhihKaeeoBxTKTF3Kc10NMgCIjqhhwNBMi8JmORaCzIa4JQlzD-FlpopeQaIGGg0U_SjJCTmKQvS1KVm0FX6rJO1Addyj0WFRm6WYkzjBkfZijTWIo2tSGO3DbfNO_MSi2Mt9V19VHH1X-ZryM__Rn4BO545bdvYcgmtYrGUV7AtvotJvri2CvkDOrDXwg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-L8zINvWmjarEkfnTg23MZwc-ytpGmqg1nH2vn3m6QfMJCBPvd6lMs19_07gDuPER4yh1h26EqLYBFbyowoXZZScOLboR0aENcu7ffZZOIPiqGwtOx2L0uS5qauht1ss3pVhzu62qbi4E3YIspiacT81-G4vH-VQ5HXOIkKs5R2ucWozO88Vs3Rai3UmJjWwf8-7hD2C5cSPeY6cAQbMjmGvV6Fx5qewLLF0wzxJELDqYYDRs2FfP_kCRrkiRh1OKhndkmnSHmxaPg104kGNFaRdJEtRJ1E5hOYKrY2rEwfnYw0D72TJkXTBDV5wsUHGs51p9cpvLWeR09tq1i4YAnHx5klWYxdijkTygsjNOLUEZRjKiXmNqWxigaZR0TDd7AnSOyEHpNcaUFMPRyxkLlnUEu-EnkOiGhoNF30o8Qn-inzosimetBVuqwR1wGXcg9EgUaul2LMggpH2Yg0UCINjEgDuw731TvzHItjLfVDeVRB8V-ma8gv_kZ-CzvtUa8bdDv9l0vYdfTJmyaXK6hli6W8hm3xnU3TxY1Rzh9hDdqm |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RfTBb3F-5sE3LWvarEkfnVocbmMwHXsraZrqYGZj7fz7TdIPHMhAfG4ayt2ld7_c3e8AuPEoZhF1sGVHrrAw4oml3IiyZSE4w74d2ZEhce2QXo-ORn7_Rxe_qXYvU5J5T4NmaZJZYxYnjarxzTZjWDX00Zk3hYnXwQbWhfQarw-G5b9YBRd5vhMryKUszS3aZn7fY9k1LedFjbsJ9v7_oftgtwg14X1uGwdgTchDsNOteFrTI7AIWJpBJmM4GGuaYNiai_dPJmE_v6BRSoNdM2M6hSq6hYPpRF9AwKFC2MUtImxLkXdmKsxttjL1dSLWe-hZNSkcS9hikvEPOJjpCrBj8BY8vT48W8UgBos7PsosQRPkEsQoV9EZJjEjDicMESEQswlJFEqkHuZN30Eex4kTeVQwZR0J8VBMI-qegJqcSnEKINaUaToZSLCP9VPqxbFNdAOscGkzqQNU6iDkBUu5HpYxCSt-ZSPSUIk0NCIN7Tq4rd6Z5RwdK1fflWoLi_Oarlh-9rfl12Cr_xiEnXbv5RxsO1rxpvblAtSy-UJcgk3-lY3T-ZWx0293i-OK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Simple+Bregman+Projection+Methods+for+Solving+Variational+Inequalities+and+Related+Problems+in+Banach+Spaces&rft.jtitle=Resultate+der+Mathematik&rft.au=Gibali%2C+Aviv&rft.au=Jolaoso%2C+Lateef+Olakunle&rft.au=Mewomo%2C+Oluwatosin+Temitope&rft.au=Taiwo%2C+Adeolu&rft.date=2020-12-01&rft.pub=Springer+International+Publishing&rft.issn=1422-6383&rft.eissn=1420-9012&rft.volume=75&rft.issue=4&rft_id=info:doi/10.1007%2Fs00025-020-01306-0&rft.externalDocID=10_1007_s00025_020_01306_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6383&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6383&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6383&client=summon |