Efficient algorithm for full-state quantum circuit simulation with DD compression while maintaining accuracy

With the development of noisy intermediate-scale quantum machines, quantum processors show their supremacy in specific applications. To better understand the quantum behavior and verify larger quantum bit (qubit) algorithms, simulation on classical computers becomes crucial. However, as the simulate...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Quantum information processing Ročník 22; číslo 11
Hlavní autori: Song, Yuhong, Sha, Edwin Hsing-Mean, Zhuge, Qingfeng, Xu, Rui, Wang, Han
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 17.11.2023
Predmet:
ISSN:1573-1332, 1573-1332
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the development of noisy intermediate-scale quantum machines, quantum processors show their supremacy in specific applications. To better understand the quantum behavior and verify larger quantum bit (qubit) algorithms, simulation on classical computers becomes crucial. However, as the simulated number of qubits increases, the full-state simulation suffers exponential memory increment for state vector storing. In order to compress the state vector, some existing works reduce the memory by data encoding compressors. Nevertheless, the memory requirement remains massive. Meanwhile, others utilize compact decision diagrams (DD) to represent the state vector, which only demands linear memory size. However, the existing DD-based simulation algorithm possesses many redundant calculations that require further exploration. Besides, the traditional normalization-based nodes merging method of DD amplifies the side influences of approximate error. Therefore, to tackle the above challenges, in this paper, we first fully explore the redundancies in the recursive-based DD simulation (RecurSim) algorithm. Inspired by the regularities of the quantum circuit model, a scale-based simulation (ScaleSim) algorithm is proposed, which removes plenty of unnecessary computations. Furthermore, to eliminate the influences of approximate error, we propose a new pre-check DD building method, namely PCB, which maintains the accuracy of DD representation and produces more memory saving. Comprehensive experiments show that our method achieves up to 24124.2 × acceleration and 3.2  × 10 7 × memory reduction than traditional DD-based methods on quantum algorithms while maintaining the representation accuracy.
AbstractList With the development of noisy intermediate-scale quantum machines, quantum processors show their supremacy in specific applications. To better understand the quantum behavior and verify larger quantum bit (qubit) algorithms, simulation on classical computers becomes crucial. However, as the simulated number of qubits increases, the full-state simulation suffers exponential memory increment for state vector storing. In order to compress the state vector, some existing works reduce the memory by data encoding compressors. Nevertheless, the memory requirement remains massive. Meanwhile, others utilize compact decision diagrams (DD) to represent the state vector, which only demands linear memory size. However, the existing DD-based simulation algorithm possesses many redundant calculations that require further exploration. Besides, the traditional normalization-based nodes merging method of DD amplifies the side influences of approximate error. Therefore, to tackle the above challenges, in this paper, we first fully explore the redundancies in the recursive-based DD simulation (RecurSim) algorithm. Inspired by the regularities of the quantum circuit model, a scale-based simulation (ScaleSim) algorithm is proposed, which removes plenty of unnecessary computations. Furthermore, to eliminate the influences of approximate error, we propose a new pre-check DD building method, namely PCB, which maintains the accuracy of DD representation and produces more memory saving. Comprehensive experiments show that our method achieves up to 24124.2 × acceleration and 3.2  × 10 7 × memory reduction than traditional DD-based methods on quantum algorithms while maintaining the representation accuracy.
ArticleNumber 413
Author Song, Yuhong
Sha, Edwin Hsing-Mean
Xu, Rui
Zhuge, Qingfeng
Wang, Han
Author_xml – sequence: 1
  givenname: Yuhong
  orcidid: 0000-0002-4310-2766
  surname: Song
  fullname: Song, Yuhong
  organization: School of Computer Science and Technology, East China Normal University
– sequence: 2
  givenname: Edwin Hsing-Mean
  orcidid: 0000-0001-5605-5631
  surname: Sha
  fullname: Sha, Edwin Hsing-Mean
  organization: School of Computer Science and Technology, East China Normal University
– sequence: 3
  givenname: Qingfeng
  orcidid: 0000-0002-1107-3470
  surname: Zhuge
  fullname: Zhuge, Qingfeng
  email: qfzhuge@cs.ecnu.edu.cn
  organization: School of Computer Science and Technology, East China Normal University
– sequence: 4
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  organization: School of Computer Science and Technology, East China Normal University
– sequence: 5
  givenname: Han
  surname: Wang
  fullname: Wang, Han
  organization: School of Computer Science and Technology, East China Normal University
BookMark eNp9kE1LAzEQhoNUsK3-AU_5A9Ek-9Hdo7T1Awpe9BxmY9KmZJOaZJH-e2PXg3jowDDDMM8M7ztDE-edQuiW0TtG6eI-MsZ4QygvCC1ZTUl1gaasWhSEFQWf_Omv0CzGPaWc1U09RXattZFGuYTBbn0waddj7QPWg7UkJkgKfw7g0tBjaYIcTMLR9IOFZLzDX3kfr1ZY-v4QVIyn2c5YhXswLuU0botByiGAPF6jSw02qpvfOkfvj-u35TPZvD69LB82RPKWJaIWZcVp19YUVMGlZnUOKKlqdcehbbSu66xasg66ireU66YpP6DSilaqLHkxR3y8K4OPMSgtDsH0EI6CUfHjlxj9EtkvcfJLVBlq_kHSpJPKFMDY82gxojH_cVsVxN4PwWWJ56hvtRWD3Q
CitedBy_id crossref_primary_10_1002_qute_202500223
Cites_doi 10.1145/237814.237866
10.1038/s41567-018-0124-x
10.1137/S0097539796300921
10.23919/DATE.2017.7927034
10.1016/j.cpc.2006.08.007
10.1109/SC41404.2022.00019
10.1145/3126908.3126947
10.1023/B:QINP.0000022725.70000.4a
10.1137/S0036144598347011
10.23919/DATE.2017.7927035
10.1109/TPDS.2019.2947511
10.1109/TCAD.2018.2834427
10.22331/q-2018-01-31-49
10.1038/s41586-019-1666-5
10.1038/s41467-020-20314-w
10.1109/HPCA51647.2021.00026
10.1145/3295500.3356155
10.1371/journal.pone.0206704
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11128-023-04160-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-1332
ExternalDocumentID 10_1007_s11128_023_04160_5
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62372182; 62372183
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5F
-5G
-BR
-EM
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9O
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c291t-e74520b960ae32cf16666a40e9fb2a98ff66100c1bab52902f884da5fe05e4423
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001103524200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-1332
IngestDate Sat Nov 29 03:12:08 EST 2025
Tue Nov 18 21:39:35 EST 2025
Fri Feb 21 02:40:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Quantum circuit simulation
Decision diagram
Algorithm optimization
Error mitigation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e74520b960ae32cf16666a40e9fb2a98ff66100c1bab52902f884da5fe05e4423
ORCID 0000-0001-5605-5631
0000-0002-4310-2766
0000-0002-1107-3470
ParticipantIDs crossref_primary_10_1007_s11128_023_04160_5
crossref_citationtrail_10_1007_s11128_023_04160_5
springer_journals_10_1007_s11128_023_04160_5
PublicationCentury 2000
PublicationDate 2023-11-17
PublicationDateYYYYMMDD 2023-11-17
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-17
  day: 17
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Quantum information processing
PublicationTitleAbbrev Quantum Inf Process
PublicationYear 2023
Publisher Springer US
Publisher_xml – name: Springer US
References BernsteinEVaziraniUQuantum complexity theorySIAM J. Comput.199726514111473147198810.1137/S00975397963009210895.68042
Shang, H., Shen, L., Fan, Y., Xu, Z., Guo, C., Liu, J., Zhou, W., Ma, H., Lin, R., Yang, Y., et al.: Large-scale simulation of quantum computational chemistry on a new Sunway supercomputer. arXiv preprint arXiv:2207.03711 (2022)
LiRWuBYingMSunXYangGQuantum supremacy circuit simulation on Sunway TaihuLightIEEE Trans. Parallel Distrib. Syst.201931480581610.1109/TPDS.2019.2947511
Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: Design automation and design space exploration for quantum computers. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp. 470–475 (2017). IEEE
McCaskeyADumitrescuEChenMLyakhDHumbleTValidating quantum-classical programming models with tensor network simulationsPLoS ONE20181312020670410.1371/journal.pone.0206704
Fatima, A., Markov, I.L.: Faster schrödinger-style simulation of quantum circuits. In: 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pp. 194–207 (2021). IEEE
BoixoSIsakovSVSmelyanskiyVNBabbushRDingNJiangZBremnerMJMartinisJMNevenHCharacterizing quantum supremacy in near-term devicesNat. Phys.201814659560010.1038/s41567-018-0124-x
Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Neven, H.: Simulation of low-depth quantum circuits as complex undirected graphical models. arXiv preprint arXiv:1712.05384 (2017)
Wu, X.-C., Di, S., Dasgupta, E.M., Cappello, F., Finkel, H., Alexeev, Y., Chong, F.T.: Full-state quantum circuit simulation by using data compression. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–24 (2019)
SteigerDSHänerTTroyerMProjectQ: an open source software framework for quantum computingQuantum201824910.22331/q-2018-01-31-49
Pednault, E., Gunnels, J.A., Nannicini, G., Horesh, L., Magerlein, T., Solomonik, E., Wisnieff, R.: Breaking the 49-qubit barrier in the simulation of quantum circuits. arXiv preprint arXiv:1710.0586715 (2017)
NielsenMAChuangILQuantum Computation and Quantum Information2000CambridgeCambridge University Press1049.81015
ZhouYStoudenmireEMWaintalXWhat limits the simulation of quantum computers?Phys. Rev. X2020104
Häner, T., Steiger, D.S.: 0.5 petabyte simulation of a 45-qubit quantum circuit. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–10 (2017)
ViamontesGFMarkovILHayesJPImproving gate-level simulation of quantum circuitsQuantum Inf. Process.200325347380206596910.1023/B:QINP.0000022725.70000.4a1130.81341
ShorPWPolynomial-time algorithms for prime factorization and discrete logarithms on a quantum computerSIAM Rev.1999412303332168454610.1137/S00361445983470111005.115071999SIAMR..41..303S
JiangWXiongJShiYA co-design framework of neural networks and quantum circuits towards quantum advantageNat. Commun.2021121113
ZulehnerAWilleRAdvanced simulation of quantum computationsIEEE Trans. Comput. Aided Des. Integr. Circuits Syst.201838584885910.1109/TCAD.2018.2834427
Khammassi, N., Ashraf, I., Fu, X., Almudever, C.G., Bertels, K.: Qx: a high-performance quantum computer simulation platform. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp. 464–469 (2017). IEEE
Aaronson, S., Chen, L.: Complexity-theoretic foundations of quantum supremacy experiments. In: 32nd Computational Complexity Conference. LIPIcs, vol. 79, pp. 22–167 (2017)
AruteFAryaKBabbushRBaconDBardinJCBarendsRBiswasRBoixoSBrandaoFGBuellDAQuantum supremacy using a programmable superconducting processorNature2019574777950551010.1038/s41586-019-1666-52019Natur.574..505A
Smelyanskiy, M., Sawaya, N.P., Aspuru-Guzik, A.: qHiPSTER: the quantum high performance software testing environment. arXiv preprint arXiv:1601.07195 (2016)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)
De RaedtKMichielsenKDe RaedtHTrieuBArnoldGRichterMLippertTWatanabeHItoNMassively parallel quantum computer simulatorComput. Phys. Commun.2007176212113610.1016/j.cpc.2006.08.0071196.810942007CoPhC.176..121D
Y Zhou (4160_CR17) 2020; 10
A McCaskey (4160_CR9) 2018; 13
4160_CR7
4160_CR11
4160_CR8
4160_CR10
A Zulehner (4160_CR15) 2018; 38
4160_CR21
4160_CR20
S Boixo (4160_CR2) 2018; 14
W Jiang (4160_CR6) 2021; 12
4160_CR13
DS Steiger (4160_CR24) 2018; 2
4160_CR12
4160_CR23
4160_CR19
MA Nielsen (4160_CR1) 2000
PW Shor (4160_CR4) 1999; 41
E Bernstein (4160_CR16) 1997; 26
GF Viamontes (4160_CR14) 2003; 2
F Arute (4160_CR3) 2019; 574
R Li (4160_CR22) 2019; 31
4160_CR5
K De Raedt (4160_CR18) 2007; 176
References_xml – reference: Shang, H., Shen, L., Fan, Y., Xu, Z., Guo, C., Liu, J., Zhou, W., Ma, H., Lin, R., Yang, Y., et al.: Large-scale simulation of quantum computational chemistry on a new Sunway supercomputer. arXiv preprint arXiv:2207.03711 (2022)
– reference: AruteFAryaKBabbushRBaconDBardinJCBarendsRBiswasRBoixoSBrandaoFGBuellDAQuantum supremacy using a programmable superconducting processorNature2019574777950551010.1038/s41586-019-1666-52019Natur.574..505A
– reference: ZhouYStoudenmireEMWaintalXWhat limits the simulation of quantum computers?Phys. Rev. X2020104
– reference: Häner, T., Steiger, D.S.: 0.5 petabyte simulation of a 45-qubit quantum circuit. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–10 (2017)
– reference: SteigerDSHänerTTroyerMProjectQ: an open source software framework for quantum computingQuantum201824910.22331/q-2018-01-31-49
– reference: NielsenMAChuangILQuantum Computation and Quantum Information2000CambridgeCambridge University Press1049.81015
– reference: JiangWXiongJShiYA co-design framework of neural networks and quantum circuits towards quantum advantageNat. Commun.2021121113
– reference: Smelyanskiy, M., Sawaya, N.P., Aspuru-Guzik, A.: qHiPSTER: the quantum high performance software testing environment. arXiv preprint arXiv:1601.07195 (2016)
– reference: Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Neven, H.: Simulation of low-depth quantum circuits as complex undirected graphical models. arXiv preprint arXiv:1712.05384 (2017)
– reference: LiRWuBYingMSunXYangGQuantum supremacy circuit simulation on Sunway TaihuLightIEEE Trans. Parallel Distrib. Syst.201931480581610.1109/TPDS.2019.2947511
– reference: Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: Design automation and design space exploration for quantum computers. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp. 470–475 (2017). IEEE
– reference: BernsteinEVaziraniUQuantum complexity theorySIAM J. Comput.199726514111473147198810.1137/S00975397963009210895.68042
– reference: De RaedtKMichielsenKDe RaedtHTrieuBArnoldGRichterMLippertTWatanabeHItoNMassively parallel quantum computer simulatorComput. Phys. Commun.2007176212113610.1016/j.cpc.2006.08.0071196.810942007CoPhC.176..121D
– reference: Pednault, E., Gunnels, J.A., Nannicini, G., Horesh, L., Magerlein, T., Solomonik, E., Wisnieff, R.: Breaking the 49-qubit barrier in the simulation of quantum circuits. arXiv preprint arXiv:1710.0586715 (2017)
– reference: Wu, X.-C., Di, S., Dasgupta, E.M., Cappello, F., Finkel, H., Alexeev, Y., Chong, F.T.: Full-state quantum circuit simulation by using data compression. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–24 (2019)
– reference: ViamontesGFMarkovILHayesJPImproving gate-level simulation of quantum circuitsQuantum Inf. Process.200325347380206596910.1023/B:QINP.0000022725.70000.4a1130.81341
– reference: Fatima, A., Markov, I.L.: Faster schrödinger-style simulation of quantum circuits. In: 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pp. 194–207 (2021). IEEE
– reference: Aaronson, S., Chen, L.: Complexity-theoretic foundations of quantum supremacy experiments. In: 32nd Computational Complexity Conference. LIPIcs, vol. 79, pp. 22–167 (2017)
– reference: BoixoSIsakovSVSmelyanskiyVNBabbushRDingNJiangZBremnerMJMartinisJMNevenHCharacterizing quantum supremacy in near-term devicesNat. Phys.201814659560010.1038/s41567-018-0124-x
– reference: Khammassi, N., Ashraf, I., Fu, X., Almudever, C.G., Bertels, K.: Qx: a high-performance quantum computer simulation platform. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp. 464–469 (2017). IEEE
– reference: ShorPWPolynomial-time algorithms for prime factorization and discrete logarithms on a quantum computerSIAM Rev.1999412303332168454610.1137/S00361445983470111005.115071999SIAMR..41..303S
– reference: Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)
– reference: McCaskeyADumitrescuEChenMLyakhDHumbleTValidating quantum-classical programming models with tensor network simulationsPLoS ONE20181312020670410.1371/journal.pone.0206704
– reference: ZulehnerAWilleRAdvanced simulation of quantum computationsIEEE Trans. Comput. Aided Des. Integr. Circuits Syst.201838584885910.1109/TCAD.2018.2834427
– ident: 4160_CR13
– ident: 4160_CR5
  doi: 10.1145/237814.237866
– ident: 4160_CR12
– volume: 14
  start-page: 595
  issue: 6
  year: 2018
  ident: 4160_CR2
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0124-x
– volume: 26
  start-page: 1411
  issue: 5
  year: 1997
  ident: 4160_CR16
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539796300921
– ident: 4160_CR20
– ident: 4160_CR23
  doi: 10.23919/DATE.2017.7927034
– volume: 176
  start-page: 121
  issue: 2
  year: 2007
  ident: 4160_CR18
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2006.08.007
– ident: 4160_CR19
  doi: 10.1109/SC41404.2022.00019
– ident: 4160_CR21
  doi: 10.1145/3126908.3126947
– volume: 2
  start-page: 347
  issue: 5
  year: 2003
  ident: 4160_CR14
  publication-title: Quantum Inf. Process.
  doi: 10.1023/B:QINP.0000022725.70000.4a
– volume: 41
  start-page: 303
  issue: 2
  year: 1999
  ident: 4160_CR4
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144598347011
– ident: 4160_CR7
  doi: 10.23919/DATE.2017.7927035
– volume: 31
  start-page: 805
  issue: 4
  year: 2019
  ident: 4160_CR22
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2019.2947511
– volume: 38
  start-page: 848
  issue: 5
  year: 2018
  ident: 4160_CR15
  publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2018.2834427
– ident: 4160_CR8
– volume-title: Quantum Computation and Quantum Information
  year: 2000
  ident: 4160_CR1
– volume: 2
  start-page: 49
  year: 2018
  ident: 4160_CR24
  publication-title: Quantum
  doi: 10.22331/q-2018-01-31-49
– volume: 574
  start-page: 505
  issue: 7779
  year: 2019
  ident: 4160_CR3
  publication-title: Nature
  doi: 10.1038/s41586-019-1666-5
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 4160_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20314-w
– ident: 4160_CR10
  doi: 10.1109/HPCA51647.2021.00026
– ident: 4160_CR11
  doi: 10.1145/3295500.3356155
– volume: 10
  issue: 4
  year: 2020
  ident: 4160_CR17
  publication-title: Phys. Rev. X
– volume: 13
  start-page: 0206704
  issue: 12
  year: 2018
  ident: 4160_CR9
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0206704
SSID ssj0021686
Score 2.3171225
Snippet With the development of noisy intermediate-scale quantum machines, quantum processors show their supremacy in specific applications. To better understand the...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Data Structures and Information Theory
Mathematical Physics
Physics
Physics and Astronomy
Quantum Computing
Quantum Information Technology
Quantum Physics
Spintronics
Title Efficient algorithm for full-state quantum circuit simulation with DD compression while maintaining accuracy
URI https://link.springer.com/article/10.1007/s11128-023-04160-5
Volume 22
WOSCitedRecordID wos001103524200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1332
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021686
  issn: 1573-1332
  databaseCode: RSV
  dateStart: 20020401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aFbxYrYr1RQ7eNJDdZl9HsS0epIgveluSNLEL3a3uQ_Dfm2SzLQUp6HWZQJhs5pGZbz4ArnrKLkriCxRgSXWZUSCGOUM-oRGRNOCSG6DwQzAaheNx9GhBYUXT7d6UJI2lXoLdVGgQIuVjEFZRBEbeJthS7i7QhA1Pz2-LNMvxQ9_CY35ft-qCVuufxq0M2__b0D7Ys2EkvK3P_QBsiKwD2g1FA7Q3tgN2TIcnLw7BbGCGRSgfA-nsfZ4n5TSFKmKF-gEeGVwR_KyUnqsU8iTnVVLCIkktuxfU77Ww34e6Bb1unVXfpsqkwJQmWVnzTEDKeZVT_n0EXoeDl7t7ZKkWEHcjp0QiIJ6LmUpnqOi5XOpiok8JFpFkLo1CKZUfx5g7jDLPjbArw5BMqCcF9gRRIdkxaGXzTJwAGLlMcxEx7jJGGMNUndEk8gmWPlfZktMFTqP9mNs55JoOYxYvJyhrxcZKsbFRbOx1wfVizUc9hWOt9E1zYLG9kcUa8dO_iZ-BXU05r_GITnAOWmVeiQuwzb_KpMgvza_4Ax_O2sg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60KnqxWhXrMwdvGshus6-j2JaKtQhW6W1J0sQu9KH7EPz3JtvdloIIel0mECabmW8yjw_gqqHtoqKuxB5RzKQZJeZEcOxSFlDFPKFE3ijc9Xo9fzAInoqmsKSsdi9TkrmlXja7aWjgY-1jMNEogmBnHTaomfhlYvTn10WYZbm-W7TH_Lxu1QWt5j9zt9Ku_m9De7BbwEh0Oz_3fViT0xpUS4oGVNzYGmzlFZ4iOYBxKx8WoX0MYuO3WRylownSiBWZB3ic9xWhj0zrOZsgEcUii1KURJOC3QuZ91rUbCJTgj4vndXfRtqkoAmLpumcZwIxIbKYia9DeGm3-ncdXFAtYGEHVoqlRx2bcB3OMNmwhTLJRJdRIgPFbRb4Smk_ToiwOOOOHRBb-T4dMkdJ4kiqIdkRVKazqTwGFNjccBFxYXNOOSdMQ5Jh4FKiXKGjJasOVqn9UBRzyA0dxjhcTlA2ig21YsNcsaFTh-vFmvf5FI5fpW_KAwuLG5n8In7yN_FL2O70H7th9773cAo7hn7e9CZa3hlU0jiT57ApPtMoiS_y3_IbaivdrA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60PvBitSq-zcGbhma32ddRbIuilOKL3pYkTexCu9XtruC_N9ndWgtSEK_LJCyTx8xk5psP4Lyh70VFXYk9ophJM0rMieDYpSyginlCiRwofO91On6vF3R_oPjzavdpSrLANJguTXFaf-ur-gz4pt0EH2t7g4n2KAh2lmGF6kjGFPU9PL58h1yW67slVOb3cfPmaD4XmpuYdvX_P7cFm6V7ia6K_bANSzKuQXVK3YDKk1yDtbzyU0x2YNjKm0jo6REbvo6TKB2MkPZkkXmYxzneCL1nWv_ZCIkoEVmUokk0Klm_kHnHRc0mMqXpRUmt_jbQVw0asShOC_4JxITIEiY-d-G53Xq6vsElBQMWdmClWHrUsQnXYQ6TDVsok2R0GSUyUNxmga-Utu-ECIsz7tgBsZXv0z5zlCSOpNpV24NKPI7lPqDA5oajiAubc8o5YdpV6QcuJcoVOoqyDsCarkQoyv7khiZjGM46KxvFhlqxYa7Y0DmAi-8xb0V3joXSl9PFC8uTOlkgfvg38TNY7zbb4f1t5-4INgwrvYEsWt4xVNIkkyewKj7SaJKc5jv0C3fE5pA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+algorithm+for+full-state+quantum+circuit+simulation+with+DD+compression+while+maintaining+accuracy&rft.jtitle=Quantum+information+processing&rft.au=Song%2C+Yuhong&rft.au=Sha%2C+Edwin+Hsing-Mean&rft.au=Zhuge%2C+Qingfeng&rft.au=Xu%2C+Rui&rft.date=2023-11-17&rft.issn=1573-1332&rft.eissn=1573-1332&rft.volume=22&rft.issue=11&rft_id=info:doi/10.1007%2Fs11128-023-04160-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11128_023_04160_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-1332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-1332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-1332&client=summon