Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow Profile

Spatiotemporal data are very common in many applications, such as manufacturing systems and transportation systems. Given the intrinsic complex spatial and temporal correlations of such data, short-term and long-term prediction for spatiotemporal data is often very challenging. Most of the tradition...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE robotics and automation letters Ročník 5; číslo 4; s. 5010 - 5017
Hlavní autoři: Li, Ziyue, Yan, Hao, Zhang, Chen, Tsung, Fugee
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2377-3766, 2377-3766
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Spatiotemporal data are very common in many applications, such as manufacturing systems and transportation systems. Given the intrinsic complex spatial and temporal correlations of such data, short-term and long-term prediction for spatiotemporal data is often very challenging. Most of the traditional statistical models fail to preserve innate features in data alongside their complex correlations. In this paper, we focus on a tensor-based prediction method and propose several practical techniques to improve both long-term and short-term prediction accuracy. For long-term prediction, we propose the "tensor decomposition + 2-Dimensional Auto-Regressive Moving Average (2D-ARMA)" model, and an effective way to update prediction in real-time; For short-term prediction, we propose to conduct tensor completion based on tensor clustering to avoid oversimplification and ensure accuracy. A case study based on the metro passenger flow data is conducted to demonstrate the improved performance.
AbstractList Spatiotemporal data are very common in many applications, such as manufacturing systems and transportation systems. Given the intrinsic complex spatial and temporal correlations of such data, short-term and long-term prediction for spatiotemporal data is often very challenging. Most of the traditional statistical models fail to preserve innate features in data alongside their complex correlations. In this paper, we focus on a tensor-based prediction method and propose several practical techniques to improve both long-term and short-term prediction accuracy. For long-term prediction, we propose the "tensor decomposition + 2-Dimensional Auto-Regressive Moving Average (2D-ARMA)" model, and an effective way to update prediction in real-time; For short-term prediction, we propose to conduct tensor completion based on tensor clustering to avoid oversimplification and ensure accuracy. A case study based on the metro passenger flow data is conducted to demonstrate the improved performance.
Author Zhang, Chen
Yan, Hao
Tsung, Fugee
Li, Ziyue
Author_xml – sequence: 1
  givenname: Ziyue
  orcidid: 0000-0003-4983-9352
  surname: Li
  fullname: Li, Ziyue
  email: zlibn@connect.ust.hk
  organization: Department of Industrial Engineering and Decision Analytics, Hong Kong University of Science and Technology, Hong Kong
– sequence: 2
  givenname: Hao
  orcidid: 0000-0002-4322-7323
  surname: Yan
  fullname: Yan, Hao
  email: haoyan@asu.edu
  organization: Assistant Professor in School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 3
  givenname: Chen
  orcidid: 0000-0002-4767-9597
  surname: Zhang
  fullname: Zhang, Chen
  email: zhangchen01@tsinghua.edu.cn
  organization: Assistant Professor in Industrial Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Fugee
  orcidid: 0000-0002-0575-8254
  surname: Tsung
  fullname: Tsung, Fugee
  email: season@ust.hk
  organization: Chair Professor in Department of Industrial Engineering and Decision Analytics, Hong Kong University of Science and Technology, Hong Kong
BookMark eNp9kE1Lw0AQhhdRsNbeBS8Bz6mzH9kkx1KsigHF1nPYbmZrSpqNuyniv3dDi4gHT7Oz8z4z8FyQ09a2SMgVhSmlkN8Wr7MpAwZTDiDSLDkhI8bTNOaplKe_3udk4v0WAGjCUp4nI_JU2HYTL9-t66MVul207FRf2x53nXWqCX-tty56cVjVOgzayAyt8h7bDbpo0djPMLWmbvCSnBnVeJwc65i8Le5W84e4eL5_nM-KWLOc9jHKqqIaFK9yk0gJTGVgzDoTqpJUwFqDoCbHBJlgWgiQucq0rpJUYBqijI_JzWFv5-zHHn1fbu3eteFkGZDgIWWShxQcUtpZ7x2asnP1TrmvkkI5WCuDtXKwVh6tBUT-QXTdDzra3qm6-Q-8PoA1Iv7cySmTlHP-DSNietA
CODEN IRALC6
CitedBy_id crossref_primary_10_1016_j_commatsci_2023_112110
crossref_primary_10_3390_w13162312
crossref_primary_10_1016_j_eswa_2025_129506
crossref_primary_10_1080_24725854_2025_2534003
crossref_primary_10_1155_2022_6831167
crossref_primary_10_1080_24725854_2022_2092241
crossref_primary_10_1088_1742_6596_2138_1_012005
crossref_primary_10_1016_j_eswa_2021_116057
crossref_primary_10_1016_j_desal_2021_115129
crossref_primary_10_3233_JCM_247338
crossref_primary_10_1080_00224065_2024_2369933
crossref_primary_10_1007_s11227_024_06331_2
crossref_primary_10_1109_TMC_2024_3435436
crossref_primary_10_1287_ijds_2022_0028
crossref_primary_10_1080_00401706_2025_2491362
crossref_primary_10_1016_j_desal_2024_117951
Cites_doi 10.1109/MDM.2017.32
10.1137/07070111X
10.1145/3132847.3132996
10.1007/s10543-013-0455-z
10.1016/j.trc.2018.11.003
10.1609/aaai.v33i01.33013656
10.1109/SPCOM.2010.5560514
10.1109/UIC-ATC.2017.8397485
10.1109/TITS.2015.2513411
10.1080/01621459.2018.1527701
10.1016/j.physa.2015.09.105
10.1109/TPAMI.2015.2392756
10.1061/(ASCE)0733-947X(2003)129:6(664)
10.1145/2783258.2783377
10.1109/TPAMI.2012.39
10.1016/j.compenvurbsys.2016.10.006
10.1145/1921632.1921636
10.1145/3132847.3132945
10.1109/TSP.2016.2586759
10.1109/ACCESS.2019.2894267
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2020.3004785
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 5017
ExternalDocumentID 10_1109_LRA_2020_3004785
9126133
Genre orig-research
GrantInformation_xml – fundername: NSF CMMI
  grantid: 1922739
– fundername: National Natural Science Foundation of China; NSFC
  grantid: 71931006; 71901131; 71932006
  funderid: 10.13039/501100001809
– fundername: NSF
  grantid: DMS-1830363
– fundername: Hong Kong RGC GRF
  grantid: 16203917; 16201718
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-e6dd1c0a3d9f56602a80ffb84ad6140bc041f9e5e242c44069a8ccd574e7a8023
IEDL.DBID RIE
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546884500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Mon Jun 30 06:53:12 EDT 2025
Sat Nov 29 06:03:07 EST 2025
Tue Nov 18 22:18:42 EST 2025
Wed Aug 27 02:32:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e6dd1c0a3d9f56602a80ffb84ad6140bc041f9e5e242c44069a8ccd574e7a8023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4767-9597
0000-0002-0575-8254
0000-0003-4983-9352
0000-0002-4322-7323
PQID 2422027263
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2020_3004785
crossref_citationtrail_10_1109_LRA_2020_3004785
ieee_primary_9126133
proquest_journals_2422027263
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref2
ref17
bahadori (ref1) 0
ref16
ref19
ref18
yuan (ref23) 2018
ref24
ref25
ref20
ref22
luan (ref15) 2019
ref21
yao (ref7) 0
tikunov (ref4) 0
ref8
ref9
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1109/MDM.2017.32
– ident: ref12
  doi: 10.1137/07070111X
– ident: ref6
  doi: 10.1145/3132847.3132996
– ident: ref17
  doi: 10.1007/s10543-013-0455-z
– ident: ref16
  doi: 10.1016/j.trc.2018.11.003
– start-page: 2588
  year: 0
  ident: ref7
  article-title: Deep multi-view spatial-temporal network for taxi demand prediction
  publication-title: Proc 32nd AAAI Conf Artif Intell
– year: 2019
  ident: ref15
  article-title: Prediction of multi-dimensional spatial variation data via Bayesian tensor completion
  publication-title: IEEE Trans Comput -Aided Des Integr Circuits Syst
– ident: ref8
  doi: 10.1609/aaai.v33i01.33013656
– ident: ref22
  doi: 10.1109/SPCOM.2010.5560514
– ident: ref3
  doi: 10.1109/UIC-ATC.2017.8397485
– ident: ref13
  doi: 10.1109/TITS.2015.2513411
– ident: ref25
  doi: 10.1080/01621459.2018.1527701
– ident: ref14
  doi: 10.1016/j.physa.2015.09.105
– ident: ref21
  doi: 10.1109/TPAMI.2015.2392756
– ident: ref5
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
– year: 2018
  ident: ref23
  article-title: High-dimension tensor completion via gradient-based optimization under tensor-train format
– start-page: 3491
  year: 0
  ident: ref1
  article-title: Fast multivariate spatio-temporal analysis via low rank tensor learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref2
  doi: 10.1145/2783258.2783377
– ident: ref19
  doi: 10.1109/TPAMI.2012.39
– ident: ref10
  doi: 10.1016/j.compenvurbsys.2016.10.006
– ident: ref9
  doi: 10.1145/1921632.1921636
– ident: ref20
  doi: 10.1145/3132847.3132945
– ident: ref18
  doi: 10.1109/TSP.2016.2586759
– start-page: 1
  year: 0
  ident: ref4
  article-title: Traffic prediction for mobile network using holt-winter's exponential smoothing
  publication-title: Proc 15th Int Conf Softw Telecommun Comput Netw
– ident: ref24
  doi: 10.1109/ACCESS.2019.2894267
SSID ssj0001527395
Score 2.352549
Snippet Spatiotemporal data are very common in many applications, such as manufacturing systems and transportation systems. Given the intrinsic complex spatial and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5010
SubjectTerms Autoregressive models
Autoregressive moving average
Autoregressive moving-average models
Bayes methods
big data in robotics and automation
Clustering
Correlation
Flow profiles
Intelligent transportation system
Mathematical analysis
Matrix decomposition
Passengers
Predictive models
probability and statistical methods
Short term
Spatiotemporal phenomena
Statistical models
Tensors
Transportation systems
Two dimensional models
Title Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow Profile
URI https://ieeexplore.ieee.org/document/9126133
https://www.proquest.com/docview/2422027263
Volume 5
WOSCitedRecordID wos000546884500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPvqpYrSUHL4Kxm-dmj0VaBGsptkJvIdlMVCiJpK3e_O3ObtIqKIK3PGbzmE12vt2Z-QbgwgucBFnsmJhKZhICRzNC3zMTwsYu-jEKO9XFJvhoFMxmYlyDq00uDCLq4DO8Vpval5_kcqWWyrrCIrzvOHWoc87LXK2v9RTFJCa8tSeSie7woUfzP5umpYoSURVL_mZ5dCmVH-OvNiqDvf89zj7sVuDR6JW9fQA1zA5h5xulYBPuhnn2ZE6eCVUbUxp1jYkOma4YqOZ0LFvkhTEulINGdYqRql2C0Cq8tTAG8_ydzupC3kfwOOhPb27NqmCCKW1hLU30k8SSLHISkRJMY3YUsDSNAzdKyAqzWDLXSgV6SHZZuirnNQqkTDzuIo8UE9wxNLI8wxMwmM-4Bm-En9xA8gBlHJOgdERKNxEt6K6VGcqKTVwVtZiHelbBREjqD5X6w0r9LbjctHgtmTT-kG0qdW_kKk23oL3ur7D61RYhvYtawLF95_T3Vmewra5dRuC1obEsVngOW_Jt-bIoOlC__-h39Lf0Cf22xsE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDb7FaNQcvgrGbd_ZYxFJpLMVW6C0km4kKJZG01b_v7CatBUXwlscsm8wkO9_szn4DcOX4VoIstnRMBdMJgaMeoevoCWFjG90YuZmqYhNev--Px3xQg5vlXhhEVMlneCsP1Vp-kou5nCprcYPwvmWtwbpj26ZR7tb6nlGRXGLcWaxFMt4KntoUAZoUmEpSRFkuecX3qGIqP0Zg5VY6u_97oD3YqeCj1i7tvQ81zA5ge4VU8BB6QZ696MNXwtXaiMZdbaiSpisOqgldy6Z5oQ0KuUQjzaKl8pRAtExwLbTOJP-ku6qU9xE8d-5Hd129KpmgC5MbMx3dJDEEi6yEpwTUmBn5LE1j344S8sMsFsw2Uo4OkmcWttz1GvlCJI5noxdJLrhjqGd5hiegMZd5Cr4RgrJ94fko4pgEhcVT6oQ3oLVQZigqPnFZ1mISqriC8ZDUH0r1h5X6G3C9bPFecmn8IXso1b2UqzTdgObCXmH1s01Dehc5hWO61unvrS5hszt6DMLgod87gy3ZT5mP14T6rJjjOWyIj9nbtLhQX9QXykDI1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-Short+Term+Spatiotemporal+Tensor+Prediction+for+Passenger+Flow+Profile&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Li%2C+Ziyue&rft.au=Yan%2C+Hao&rft.au=Zhang%2C+Chen&rft.au=Tsung%2C+Fugee&rft.date=2020-10-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=5&rft.issue=4&rft.spage=5010&rft.epage=5017&rft_id=info:doi/10.1109%2FLRA.2020.3004785&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2020_3004785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon