Superiorization and bounded perturbation resilience of a gradient projection algorithm solving the convex minimization problem

In this article, we use the superiorization methodology to investigate the bounded perturbations resilience of the gradient projection algorithm proposed in Ertürk et al. (J Nonlinear Convex Anal 21(4):943–951, 2020) for solving the convex minimization problem in Hilbert space setting. We obtain tha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization letters Ročník 17; číslo 8; s. 1957 - 1978
Hlavní autoři: Ertürk, Müzeyyen, Salkım, Ahmet
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2023
Témata:
ISSN:1862-4472, 1862-4480
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article, we use the superiorization methodology to investigate the bounded perturbations resilience of the gradient projection algorithm proposed in Ertürk et al. (J Nonlinear Convex Anal 21(4):943–951, 2020) for solving the convex minimization problem in Hilbert space setting. We obtain that the perturbed version of this gradient projection algorithm converges weakly to a solution of the convex minimization problem just like itself. We support our conclusion with an example in an infinitely dimensional Hilbert space. We also show that the superiorization methodology can be applied to the split feasibility and the inverse linear problems with the help of the perturbed gradient projection algorithm.
AbstractList In this article, we use the superiorization methodology to investigate the bounded perturbations resilience of the gradient projection algorithm proposed in Ertürk et al. (J Nonlinear Convex Anal 21(4):943–951, 2020) for solving the convex minimization problem in Hilbert space setting. We obtain that the perturbed version of this gradient projection algorithm converges weakly to a solution of the convex minimization problem just like itself. We support our conclusion with an example in an infinitely dimensional Hilbert space. We also show that the superiorization methodology can be applied to the split feasibility and the inverse linear problems with the help of the perturbed gradient projection algorithm.
Author Ertürk, Müzeyyen
Salkım, Ahmet
Author_xml – sequence: 1
  givenname: Müzeyyen
  orcidid: 0000-0002-5328-7995
  surname: Ertürk
  fullname: Ertürk, Müzeyyen
  email: merturk@adiyaman.edu.tr
  organization: Department of Mathematics, Adiyaman University
– sequence: 2
  givenname: Ahmet
  surname: Salkım
  fullname: Salkım, Ahmet
  organization: Department of Mathematics, Adiyaman University
BookMark eNp9kE1OwzAQhS0EEm3hAqx8gYAnSZ14iSr-pEos6N6yHSd1ldiV7VaUBWfHNMCCRVczo6fvzcybonPrrEboBsgtEFLdBYA5IxnJ84wAo5AdztAEappnZVmT87--yi_RNIQNIRSAsQn6fNtttTfOmw8RjbNY2AZLt7ONbnBS4s7LUfA6mN5oqzR2LRa486JJY8Rb7zZajXDfJae4HnBw_d7YDse1xsrZvX7Hg7Fm-F2TINnr4QpdtKIP-vqnztDq8WG1eM6Wr08vi_tlpnIGMdNUlKpluiaslbRsJWsqKkAK0TAxrypZ1ITOy1zRGliuGJMA0BS6FCWtC1nMUD7aKu9C8LrlW28G4Q8cCP8OkI8B8hQgPwbIDwmq_0HKxOP10QvTn0aLEQ1pj-205xu38zZ9eIr6AsvTjNM
CitedBy_id crossref_primary_10_1007_s11590_025_02192_7
crossref_primary_10_1007_s10957_025_02763_9
Cites_doi 10.1090/S0002-9939-1953-0054846-3
10.1090/S0002-9939-1974-0336469-5
10.1109/JSTSP.2007.910263
10.1088/0266-5611/26/6/065008
10.21136/MB.2018.0085-17
10.1006/jmaa.2000.7042
10.1080/00207160.2020.1755430
10.1016/j.cam.2010.12.022
10.1111/j.1475-3995.2009.00695.x
10.1088/1361-6420/33/4/044008
10.4236/ajcm.2012.24048
10.1007/s10957-011-9837-z
10.1088/0266-5611/28/3/035005
10.1007/s10013-020-00463-7
10.1007/BF03007664
10.1007/s10589-015-9777-x
10.1088/0266-5611/26/10/105018
10.1007/s00245-019-09571-4
10.2298/FIL1610829G
10.1007/s10589-012-9491-x
10.1007/s11075-019-00706-w
10.1090/S0002-9904-1967-11761-0
10.1016/0041-5553(66)90114-5
10.1515/auom-2015-0046
10.1017/CBO9780511526152
10.1118/1.4745566
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11590-022-01961-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1862-4480
EndPage 1978
ExternalDocumentID 10_1007_s11590_022_01961_y
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9M
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7Y
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c291t-e6a4cf9e809fb64fb9d76a1baad9a577b3806542c68192c99b111d3e4a4683b3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000911010100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1862-4472
IngestDate Sat Nov 29 02:44:13 EST 2025
Tue Nov 18 21:42:59 EST 2025
Fri Feb 21 02:42:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Gradient projection algorithm
Bounded perturbation resilience
Convex minimization problems
Linear inverse problems
Superiorization
Split feasibility problems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e6a4cf9e809fb64fb9d76a1baad9a577b3806542c68192c99b111d3e4a4683b3
ORCID 0000-0002-5328-7995
PageCount 22
ParticipantIDs crossref_primary_10_1007_s11590_022_01961_y
crossref_citationtrail_10_1007_s11590_022_01961_y
springer_journals_10_1007_s11590_022_01961_y
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Optimization letters
PublicationTitleAbbrev Optim Lett
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References ErtürkMGursoyFAnsariQHKarakayaVModified picard type iterative algorithm for nonexpansive mappingsJ. Nonlinear Convex Anal.201819691993338301611451.47004
HermanGTGarduñoEDavidiRCensorYSuperiorization: an optimization heuristic for medical physicsMed. Phys.20123995532554610.1118/1.4745566
LevitonESPolyakBTConstrained minimization problemsUSSR Comput. Math. Math. Phys.1966615010.1016/0041-5553(66)90114-5
HermanGSuperiorization for image analysisCombin. Lect. Notes Comput. Sci.201484661732132501486.68232
NikazadTDavidiRHermanGTAccelerated perturbation-resilient block-iterative projection methods with application to image reconstructionInverse Probl.2012283288853010.1088/0266-5611/28/3/0350051261.94014
SahuDRApplications of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory20111218720427970801281.47053
TakahashiWIntroduction to Nonlinear and Convex Analysis2009YokohamaYokohama Publishers1183.46001
Ansari,Q. H.: Topics in nonlinear analysis and optimization. World Education. Delhi (2012)
Censor, Y., Davidi, R., Herman,G.T.: Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 26(6), 65008 (2010)
PhuengrattanaWSuantaiSOn the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary intervalJ. Comput. Appl. Math.201123530063014277128310.1016/j.cam.2010.12.0221215.65095
ErtürkMGursoyFAnsariQHKarakayaVPicard type iterative method with applications to minimization problems and split feasibility problmesJ. Nonlinear Convex Anal.2020214943951410114207347531
Ertürk, M., Kızmaz, A.: A new gradient projection algorithm for convex minimization problem and its application to split feasibility problem. Vietnam J. Math. 50, 1–16 (2021)
Censor,Y.: Weak and strong superiorization: between feasibility-seeking and minimization. Analele Universitatii" Ovidius" Constanta-Seria Matematica, 23(3), 41–54 (2015)
MannWRMean value methods in iterationProc. Am. Math. Soc.1953435065105484610.1090/S0002-9939-1953-0054846-30050.11603
IshikawaSFixed points by a new iteration methodProc. Am. Math. Soc.197444114715033646910.1090/S0002-9939-1974-0336469-50286.47036
DavidiaRHermanaGCensorYPerturbation-resilient block-iterative projection methods with application to image reconstruction from projectionsInt. Trans. Oper. Res.200916505524253825310.1111/j.1475-3995.2009.00695.x
AgarwalRPO’ReganDSahuDRFixed Point Theory for Lipschitzian-Type Mappings with Applications2009New YorkSpringer1176.47037
ButnariuDDavidiRHermanGTKazantsevIGStable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problemsIEEE J. Sel. Top. Signal Process.2007154054710.1109/JSTSP.2007.910263
Gürsoy, F.: A Picard-S iterative method for approximating fixed point of weak contraction mappings. Filomat 30(10), 2829–2845 (2016)
OpialZWeak convergence of the sequence of successive approximations for nonexpansive mappingsBull. Am. Math. Soc.196773459159721130110.1090/S0002-9904-1967-11761-00179.19902
GürsoyFErtürkMAbbasMA Picard-type iterative algorithm for general variational inequalities and nonexpansive mappingsNumer. Algorithms2020833867883406435610.1007/s11075-019-00706-w1513.47120
BonackerEGibaliAKüferKHAccelerating two projection methods via perturbations with application to intensity-modulated radiation therapyAppl. Math. Optim.2021832881914423980310.1007/s00245-019-09571-41468.65069
Gürsoy, F., Karakaya, V.: A Picard-S hybrid type iteration method for solving a differential equation with retarted argument. arXiv:1403.2546 (2014)
JinWCensorYJiangMBounded perturbation resilience of projected scaled gradient methodsComput. Optim. Appl.2016632365392345744510.1007/s10589-015-9777-x1339.90262
CensorYZaslavskiAJConvergence and perturbation resilience of dynamic string-averaging projection methodsComput. Optim. Appl.2013546576300341710.1007/s10589-012-9491-x1285.90079
ErtürkMGürsoyFŞimşekNS-iterative algorithm for solving variational inequalitiesInt. J. Comput. Math.2021983435448422761110.1080/00207160.2020.17554301483.49014
NoorMANew approximation schemes for general variational inequalitiesJ. Math. Anal. Appl.2000251217229179040610.1006/jmaa.2000.70420964.49007
AgarwalRPReganDOSahuDRIterative construction of fixed points of nearly asymptotically nonexpansive mappingsJ. Nonlinear Convex Anal.20078617923146661134.47047
Picard, E.: Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. Journal de Mathématiques pures et appliquées 6, 145–210 (1890)
BaillonJBHaddadGQuelques proprietes des operateurs angle-bornes et n-cycliquement monotonesIsr. J. Math.19772613715050027910.1007/BF030076640352.47023
Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)
ErtürkMGürsoyFSome convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operatorsMath. Bohem.201914416983393419810.21136/MB.2018.0085-171474.47144
Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, vol. 28 (1990)
Xu, H.K.: Bounded perturbation resilience and superiorization techniques for the projected scaled gradient method. Inverse Probl. 33(4) (2017)
ChughRKumarVKumarSStrong Convergence of a new three step iterative scheme in Banach spacesAm. J. Comput. Math.2012234535710.4236/ajcm.2012.24048
Polyak, B.T.: Introduction to optimization, ser. Translations series in mathematics and engineering, Optimization Software. Optimization Software Inc. Publications, New York (1987)
XuHKAveraged mappings and the gradient-projection algorithmJ. Optim. Theory Appl.20111502360378281892610.1007/s10957-011-9837-z1233.90280
RP Agarwal (1961_CR2) 2007; 8
D Butnariu (1961_CR6) 2007; 1
M Ertürk (1961_CR14) 2020; 21
G Herman (1961_CR22) 2014; 8466
GT Herman (1961_CR21) 2012; 39
F Gürsoy (1961_CR17) 2020; 83
M Ertürk (1961_CR12) 2019; 144
1961_CR20
S Ishikawa (1961_CR23) 1974; 44
W Phuengrattana (1961_CR31) 2011; 235
W Takahashi (1961_CR34) 2009
RP Agarwal (1961_CR1) 2009
HK Xu (1961_CR36) 2011; 150
E Bonacker (1961_CR5) 2021; 83
MA Noor (1961_CR28) 2000; 251
M Ertürk (1961_CR13) 2018; 19
WR Mann (1961_CR26) 1953; 4
DR Sahu (1961_CR33) 2011; 12
1961_CR3
1961_CR35
Y Censor (1961_CR8) 2013; 54
R Chugh (1961_CR10) 2012; 2
1961_CR37
1961_CR30
JB Baillon (1961_CR4) 1977; 26
1961_CR7
1961_CR32
1961_CR9
M Ertürk (1961_CR15) 2021; 98
Z Opial (1961_CR29) 1967; 73
R Davidia (1961_CR11) 2009; 16
1961_CR16
1961_CR18
1961_CR19
ES Leviton (1961_CR25) 1966; 6
T Nikazad (1961_CR27) 2012; 28
W Jin (1961_CR24) 2016; 63
References_xml – reference: ChughRKumarVKumarSStrong Convergence of a new three step iterative scheme in Banach spacesAm. J. Comput. Math.2012234535710.4236/ajcm.2012.24048
– reference: SahuDRApplications of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory20111218720427970801281.47053
– reference: BaillonJBHaddadGQuelques proprietes des operateurs angle-bornes et n-cycliquement monotonesIsr. J. Math.19772613715050027910.1007/BF030076640352.47023
– reference: BonackerEGibaliAKüferKHAccelerating two projection methods via perturbations with application to intensity-modulated radiation therapyAppl. Math. Optim.2021832881914423980310.1007/s00245-019-09571-41468.65069
– reference: Polyak, B.T.: Introduction to optimization, ser. Translations series in mathematics and engineering, Optimization Software. Optimization Software Inc. Publications, New York (1987)
– reference: HermanGTGarduñoEDavidiRCensorYSuperiorization: an optimization heuristic for medical physicsMed. Phys.20123995532554610.1118/1.4745566
– reference: JinWCensorYJiangMBounded perturbation resilience of projected scaled gradient methodsComput. Optim. Appl.2016632365392345744510.1007/s10589-015-9777-x1339.90262
– reference: CensorYZaslavskiAJConvergence and perturbation resilience of dynamic string-averaging projection methodsComput. Optim. Appl.2013546576300341710.1007/s10589-012-9491-x1285.90079
– reference: Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)
– reference: LevitonESPolyakBTConstrained minimization problemsUSSR Comput. Math. Math. Phys.1966615010.1016/0041-5553(66)90114-5
– reference: OpialZWeak convergence of the sequence of successive approximations for nonexpansive mappingsBull. Am. Math. Soc.196773459159721130110.1090/S0002-9904-1967-11761-00179.19902
– reference: ErtürkMGürsoyFŞimşekNS-iterative algorithm for solving variational inequalitiesInt. J. Comput. Math.2021983435448422761110.1080/00207160.2020.17554301483.49014
– reference: MannWRMean value methods in iterationProc. Am. Math. Soc.1953435065105484610.1090/S0002-9939-1953-0054846-30050.11603
– reference: Picard, E.: Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. Journal de Mathématiques pures et appliquées 6, 145–210 (1890)
– reference: Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, vol. 28 (1990)
– reference: NikazadTDavidiRHermanGTAccelerated perturbation-resilient block-iterative projection methods with application to image reconstructionInverse Probl.2012283288853010.1088/0266-5611/28/3/0350051261.94014
– reference: AgarwalRPO’ReganDSahuDRFixed Point Theory for Lipschitzian-Type Mappings with Applications2009New YorkSpringer1176.47037
– reference: ErtürkMGürsoyFSome convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operatorsMath. Bohem.201914416983393419810.21136/MB.2018.0085-171474.47144
– reference: ErtürkMGursoyFAnsariQHKarakayaVPicard type iterative method with applications to minimization problems and split feasibility problmesJ. Nonlinear Convex Anal.2020214943951410114207347531
– reference: ErtürkMGursoyFAnsariQHKarakayaVModified picard type iterative algorithm for nonexpansive mappingsJ. Nonlinear Convex Anal.201819691993338301611451.47004
– reference: DavidiaRHermanaGCensorYPerturbation-resilient block-iterative projection methods with application to image reconstruction from projectionsInt. Trans. Oper. Res.200916505524253825310.1111/j.1475-3995.2009.00695.x
– reference: PhuengrattanaWSuantaiSOn the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary intervalJ. Comput. Appl. Math.201123530063014277128310.1016/j.cam.2010.12.0221215.65095
– reference: Ertürk, M., Kızmaz, A.: A new gradient projection algorithm for convex minimization problem and its application to split feasibility problem. Vietnam J. Math. 50, 1–16 (2021)
– reference: TakahashiWIntroduction to Nonlinear and Convex Analysis2009YokohamaYokohama Publishers1183.46001
– reference: Gürsoy, F., Karakaya, V.: A Picard-S hybrid type iteration method for solving a differential equation with retarted argument. arXiv:1403.2546 (2014)
– reference: Gürsoy, F.: A Picard-S iterative method for approximating fixed point of weak contraction mappings. Filomat 30(10), 2829–2845 (2016)
– reference: NoorMANew approximation schemes for general variational inequalitiesJ. Math. Anal. Appl.2000251217229179040610.1006/jmaa.2000.70420964.49007
– reference: Xu, H.K.: Bounded perturbation resilience and superiorization techniques for the projected scaled gradient method. Inverse Probl. 33(4) (2017)
– reference: IshikawaSFixed points by a new iteration methodProc. Am. Math. Soc.197444114715033646910.1090/S0002-9939-1974-0336469-50286.47036
– reference: HermanGSuperiorization for image analysisCombin. Lect. Notes Comput. Sci.201484661732132501486.68232
– reference: Ansari,Q. H.: Topics in nonlinear analysis and optimization. World Education. Delhi (2012)
– reference: Censor, Y., Davidi, R., Herman,G.T.: Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 26(6), 65008 (2010)
– reference: XuHKAveraged mappings and the gradient-projection algorithmJ. Optim. Theory Appl.20111502360378281892610.1007/s10957-011-9837-z1233.90280
– reference: ButnariuDDavidiRHermanGTKazantsevIGStable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problemsIEEE J. Sel. Top. Signal Process.2007154054710.1109/JSTSP.2007.910263
– reference: Censor,Y.: Weak and strong superiorization: between feasibility-seeking and minimization. Analele Universitatii" Ovidius" Constanta-Seria Matematica, 23(3), 41–54 (2015)
– reference: GürsoyFErtürkMAbbasMA Picard-type iterative algorithm for general variational inequalities and nonexpansive mappingsNumer. Algorithms2020833867883406435610.1007/s11075-019-00706-w1513.47120
– reference: AgarwalRPReganDOSahuDRIterative construction of fixed points of nearly asymptotically nonexpansive mappingsJ. Nonlinear Convex Anal.20078617923146661134.47047
– volume: 4
  start-page: 506
  issue: 3
  year: 1953
  ident: 1961_CR26
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1953-0054846-3
– volume: 44
  start-page: 147
  issue: 1
  year: 1974
  ident: 1961_CR23
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1974-0336469-5
– volume-title: Introduction to Nonlinear and Convex Analysis
  year: 2009
  ident: 1961_CR34
– volume: 1
  start-page: 540
  year: 2007
  ident: 1961_CR6
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2007.910263
– ident: 1961_CR7
  doi: 10.1088/0266-5611/26/6/065008
– volume: 144
  start-page: 69
  issue: 1
  year: 2019
  ident: 1961_CR12
  publication-title: Math. Bohem.
  doi: 10.21136/MB.2018.0085-17
– volume: 251
  start-page: 217
  year: 2000
  ident: 1961_CR28
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.2000.7042
– volume: 8
  start-page: 61
  year: 2007
  ident: 1961_CR2
  publication-title: J. Nonlinear Convex Anal.
– volume: 98
  start-page: 435
  issue: 3
  year: 2021
  ident: 1961_CR15
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2020.1755430
– volume: 235
  start-page: 3006
  year: 2011
  ident: 1961_CR31
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2010.12.022
– volume: 21
  start-page: 943
  issue: 4
  year: 2020
  ident: 1961_CR14
  publication-title: J. Nonlinear Convex Anal.
– volume: 16
  start-page: 505
  year: 2009
  ident: 1961_CR11
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/j.1475-3995.2009.00695.x
– ident: 1961_CR37
  doi: 10.1088/1361-6420/33/4/044008
– volume: 2
  start-page: 345
  year: 2012
  ident: 1961_CR10
  publication-title: Am. J. Comput. Math.
  doi: 10.4236/ajcm.2012.24048
– volume: 19
  start-page: 919
  issue: 6
  year: 2018
  ident: 1961_CR13
  publication-title: J. Nonlinear Convex Anal.
– volume: 150
  start-page: 360
  issue: 2
  year: 2011
  ident: 1961_CR36
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-011-9837-z
– ident: 1961_CR30
– volume: 28
  issue: 3
  year: 2012
  ident: 1961_CR27
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/28/3/035005
– ident: 1961_CR16
  doi: 10.1007/s10013-020-00463-7
– ident: 1961_CR32
– volume: 26
  start-page: 137
  year: 1977
  ident: 1961_CR4
  publication-title: Isr. J. Math.
  doi: 10.1007/BF03007664
– volume: 63
  start-page: 365
  issue: 2
  year: 2016
  ident: 1961_CR24
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-015-9777-x
– ident: 1961_CR35
  doi: 10.1088/0266-5611/26/10/105018
– volume: 12
  start-page: 187
  year: 2011
  ident: 1961_CR33
  publication-title: Fixed Point Theory
– volume: 83
  start-page: 881
  issue: 2
  year: 2021
  ident: 1961_CR5
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-019-09571-4
– ident: 1961_CR18
  doi: 10.2298/FIL1610829G
– volume: 54
  start-page: 65
  year: 2013
  ident: 1961_CR8
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-012-9491-x
– volume: 83
  start-page: 867
  issue: 3
  year: 2020
  ident: 1961_CR17
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-019-00706-w
– volume: 73
  start-page: 591
  issue: 4
  year: 1967
  ident: 1961_CR29
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1967-11761-0
– ident: 1961_CR3
– ident: 1961_CR19
– volume: 6
  start-page: 1
  year: 1966
  ident: 1961_CR25
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(66)90114-5
– ident: 1961_CR9
  doi: 10.1515/auom-2015-0046
– volume-title: Fixed Point Theory for Lipschitzian-Type Mappings with Applications
  year: 2009
  ident: 1961_CR1
– volume: 8466
  start-page: 1
  year: 2014
  ident: 1961_CR22
  publication-title: Combin. Lect. Notes Comput. Sci.
– ident: 1961_CR20
  doi: 10.1017/CBO9780511526152
– volume: 39
  start-page: 5532
  issue: 9
  year: 2012
  ident: 1961_CR21
  publication-title: Med. Phys.
  doi: 10.1118/1.4745566
SSID ssj0061199
Score 2.3116386
Snippet In this article, we use the superiorization methodology to investigate the bounded perturbations resilience of the gradient projection algorithm proposed in...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1957
SubjectTerms Computational Intelligence
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Operations Research/Decision Theory
Optimization
Original Paper
Simulation
Title Superiorization and bounded perturbation resilience of a gradient projection algorithm solving the convex minimization problem
URI https://link.springer.com/article/10.1007/s11590-022-01961-y
Volume 17
WOSCitedRecordID wos000911010100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1862-4480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061199
  issn: 1862-4472
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPejBt1hf5OBNF7pNzCZHEYsXi9givS1JNlsLfcjuVuzF3-4km20tSEEvC0smD5JJJo-Z70PoCqwQ4zLVgWoqEVA4rgVScwYfEzVkqBkhypFNRO027_XEsw8Kyytv9-pJ0q3Ui2A3sLyNwHqfW0yXMJitow0wd9xOx5fOa7X-srBkjQy5jQeiUdOHyvxexrI5Wn4LdSamtfu_xu2hHb-lxHelDuyjNTM-QNs_gAbh72mOzpofoq_O1OIbTzIfg4nlOMHK8iuZBEMKWCFVJsBZfDB0kx9PUixxP3MeYgX2Fzgu87APJRVvIwxqbK8nMFSFnTf7J7bIJaOqGk9ec4S6rYfu_WPgeRgC3RRhERgmqU6F4Q2RKkZTJZKIyVBJmQh5G0WKcMd7pZlFV9NCKFhAE2KopIwTRY5RbTwZmxOElaBwIoNthaYJ1ZCdpzIChaAJ7NJIQuoorEYj1h6j3FJlDOMFurLt6Bg6OnYdHc_q6Hqe571E6FgpfVMNYOxna75C_PRv4mdoy9LRl7GK56hWZFNzgTb1RzHIs0unpt-xJuZJ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzivefBNC-sa0-ZRxDFxG-KG7K3k0s7B1snaiXvxt3uSppsDGehLoeTkQnKSk8s534fQFVghGvBYOqIqmEPguOZwGVD4RH6Fu5J6njBkE36rFXS77NkGhaWFt3vxJGlW6nmwG1jeiqO9zzWmi-tMV9EaAYulHfle2q_F-kvdnDXSDXQ8EPGrNlTm9zIWzdHiW6gxMbWd_zVuF23bLSW-y3VgD61EyT7a-gE0CH_NGTpreoC-2hONbzwa2xhMzBOFheZXihSGFLBCIk-As3h_YCY_HsWY497YeIhl2F7gmMyDHpSUvQ0xqLG-nsBQFTbe7J9YI5cMi2osec0h6tQeOvd1x_IwOLLK3MyJKCcyZlFQYbGgJBZM-ZS7gnPF-K3vCy8wvFeSanQ1yZiABVR5EeGEBp7wjlApGSXRMcKCETiRwbZCEkUkZA9i7oNCEAW7NE95ZeQWoxFKi1GuqTIG4RxdWXd0CB0dmo4Op2V0PcvzniN0LJW-KQYwtLM1XSJ-8jfxS7RR7zQbYeOx9XSKNjU1fR63eIZK2XgSnaN1-ZH10_GFUdlvhUrpLQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzivefBNy9Y1psmjqENRx2BD9lZyaedg68bWiXvxt3uStruADMSXQslJUpLTnJzknO9D6AqsEGUiUo6sSO4QcNccoRiFR-iXhauo50lLNuHXaqzV4vW5LH4b7Z5fSaY5DQalKU5KAx2VZolvYIXLjolEN_gurjNZRWvEkAYZf73xnq_F1E0ZJF1mcoOIX8nSZn5vY9E0Ld6LWnNT3fn_h-6i7Wyrie9S3dhDK2G8j7bmAAjh7W2K2jo6QN-NscE97g-z3EwsYo2l4V0KNYYSsE4yLQAfvdO1iwLuR1jg9tBGjiU4O9ixlbttaCn56GFQb3NsgaErbKPcv7BBNOnl3WSkNoeoWX1s3j85GT-DoyrcTZyQCqIiHrIyjyQlkeTap8KVQmgubn1feszyYSlqUNcU5xIWVu2FRBDKPOkdoULcj8NjhCUn4KnBdkMRTRRUZ5HwQVGIht2bp70icvOZCVSGXW4oNLrBDHXZDHQAAx3YgQ4mRXQ9rTNIkTuWSt_kkxlkf_FoifjJ38Qv0Ub9oRq8PtdeTtGmYaxP0xnPUCEZjsNztK4-k85oeGG19wdwQvIR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superiorization+and+bounded+perturbation+resilience+of+a+gradient+projection+algorithm+solving+the+convex+minimization+problem&rft.jtitle=Optimization+letters&rft.au=Ert%C3%BCrk%2C+M%C3%BCzeyyen&rft.au=Salk%C4%B1m%2C+Ahmet&rft.date=2023-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=17&rft.issue=8&rft.spage=1957&rft.epage=1978&rft_id=info:doi/10.1007%2Fs11590-022-01961-y&rft.externalDocID=10_1007_s11590_022_01961_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon