Superiorization and bounded perturbation resilience of a gradient projection algorithm solving the convex minimization problem
In this article, we use the superiorization methodology to investigate the bounded perturbations resilience of the gradient projection algorithm proposed in Ertürk et al. (J Nonlinear Convex Anal 21(4):943–951, 2020) for solving the convex minimization problem in Hilbert space setting. We obtain tha...
Uloženo v:
| Vydáno v: | Optimization letters Ročník 17; číslo 8; s. 1957 - 1978 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2023
|
| Témata: | |
| ISSN: | 1862-4472, 1862-4480 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this article, we use the superiorization methodology to investigate the bounded perturbations resilience of the gradient projection algorithm proposed in Ertürk et al. (J Nonlinear Convex Anal 21(4):943–951, 2020) for solving the convex minimization problem in Hilbert space setting. We obtain that the perturbed version of this gradient projection algorithm converges weakly to a solution of the convex minimization problem just like itself. We support our conclusion with an example in an infinitely dimensional Hilbert space. We also show that the superiorization methodology can be applied to the split feasibility and the inverse linear problems with the help of the perturbed gradient projection algorithm. |
|---|---|
| AbstractList | In this article, we use the superiorization methodology to investigate the bounded perturbations resilience of the gradient projection algorithm proposed in Ertürk et al. (J Nonlinear Convex Anal 21(4):943–951, 2020) for solving the convex minimization problem in Hilbert space setting. We obtain that the perturbed version of this gradient projection algorithm converges weakly to a solution of the convex minimization problem just like itself. We support our conclusion with an example in an infinitely dimensional Hilbert space. We also show that the superiorization methodology can be applied to the split feasibility and the inverse linear problems with the help of the perturbed gradient projection algorithm. |
| Author | Ertürk, Müzeyyen Salkım, Ahmet |
| Author_xml | – sequence: 1 givenname: Müzeyyen orcidid: 0000-0002-5328-7995 surname: Ertürk fullname: Ertürk, Müzeyyen email: merturk@adiyaman.edu.tr organization: Department of Mathematics, Adiyaman University – sequence: 2 givenname: Ahmet surname: Salkım fullname: Salkım, Ahmet organization: Department of Mathematics, Adiyaman University |
| BookMark | eNp9kE1OwzAQhS0EEm3hAqx8gYAnSZ14iSr-pEos6N6yHSd1ldiV7VaUBWfHNMCCRVczo6fvzcybonPrrEboBsgtEFLdBYA5IxnJ84wAo5AdztAEappnZVmT87--yi_RNIQNIRSAsQn6fNtttTfOmw8RjbNY2AZLt7ONbnBS4s7LUfA6mN5oqzR2LRa486JJY8Rb7zZajXDfJae4HnBw_d7YDse1xsrZvX7Hg7Fm-F2TINnr4QpdtKIP-vqnztDq8WG1eM6Wr08vi_tlpnIGMdNUlKpluiaslbRsJWsqKkAK0TAxrypZ1ITOy1zRGliuGJMA0BS6FCWtC1nMUD7aKu9C8LrlW28G4Q8cCP8OkI8B8hQgPwbIDwmq_0HKxOP10QvTn0aLEQ1pj-205xu38zZ9eIr6AsvTjNM |
| CitedBy_id | crossref_primary_10_1007_s11590_025_02192_7 crossref_primary_10_1007_s10957_025_02763_9 |
| Cites_doi | 10.1090/S0002-9939-1953-0054846-3 10.1090/S0002-9939-1974-0336469-5 10.1109/JSTSP.2007.910263 10.1088/0266-5611/26/6/065008 10.21136/MB.2018.0085-17 10.1006/jmaa.2000.7042 10.1080/00207160.2020.1755430 10.1016/j.cam.2010.12.022 10.1111/j.1475-3995.2009.00695.x 10.1088/1361-6420/33/4/044008 10.4236/ajcm.2012.24048 10.1007/s10957-011-9837-z 10.1088/0266-5611/28/3/035005 10.1007/s10013-020-00463-7 10.1007/BF03007664 10.1007/s10589-015-9777-x 10.1088/0266-5611/26/10/105018 10.1007/s00245-019-09571-4 10.2298/FIL1610829G 10.1007/s10589-012-9491-x 10.1007/s11075-019-00706-w 10.1090/S0002-9904-1967-11761-0 10.1016/0041-5553(66)90114-5 10.1515/auom-2015-0046 10.1017/CBO9780511526152 10.1118/1.4745566 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11590-022-01961-y |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1862-4480 |
| EndPage | 1978 |
| ExternalDocumentID | 10_1007_s11590_022_01961_y |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9M PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7Y Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c291t-e6a4cf9e809fb64fb9d76a1baad9a577b3806542c68192c99b111d3e4a4683b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000911010100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1862-4472 |
| IngestDate | Sat Nov 29 02:44:13 EST 2025 Tue Nov 18 21:42:59 EST 2025 Fri Feb 21 02:42:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Gradient projection algorithm Bounded perturbation resilience Convex minimization problems Linear inverse problems Superiorization Split feasibility problems |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-e6a4cf9e809fb64fb9d76a1baad9a577b3806542c68192c99b111d3e4a4683b3 |
| ORCID | 0000-0002-5328-7995 |
| PageCount | 22 |
| ParticipantIDs | crossref_primary_10_1007_s11590_022_01961_y crossref_citationtrail_10_1007_s11590_022_01961_y springer_journals_10_1007_s11590_022_01961_y |
| PublicationCentury | 2000 |
| PublicationDate | 20231100 2023-11-00 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationTitle | Optimization letters |
| PublicationTitleAbbrev | Optim Lett |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | ErtürkMGursoyFAnsariQHKarakayaVModified picard type iterative algorithm for nonexpansive mappingsJ. Nonlinear Convex Anal.201819691993338301611451.47004 HermanGTGarduñoEDavidiRCensorYSuperiorization: an optimization heuristic for medical physicsMed. Phys.20123995532554610.1118/1.4745566 LevitonESPolyakBTConstrained minimization problemsUSSR Comput. Math. Math. Phys.1966615010.1016/0041-5553(66)90114-5 HermanGSuperiorization for image analysisCombin. Lect. Notes Comput. Sci.201484661732132501486.68232 NikazadTDavidiRHermanGTAccelerated perturbation-resilient block-iterative projection methods with application to image reconstructionInverse Probl.2012283288853010.1088/0266-5611/28/3/0350051261.94014 SahuDRApplications of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory20111218720427970801281.47053 TakahashiWIntroduction to Nonlinear and Convex Analysis2009YokohamaYokohama Publishers1183.46001 Ansari,Q. H.: Topics in nonlinear analysis and optimization. World Education. Delhi (2012) Censor, Y., Davidi, R., Herman,G.T.: Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 26(6), 65008 (2010) PhuengrattanaWSuantaiSOn the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary intervalJ. Comput. Appl. Math.201123530063014277128310.1016/j.cam.2010.12.0221215.65095 ErtürkMGursoyFAnsariQHKarakayaVPicard type iterative method with applications to minimization problems and split feasibility problmesJ. Nonlinear Convex Anal.2020214943951410114207347531 Ertürk, M., Kızmaz, A.: A new gradient projection algorithm for convex minimization problem and its application to split feasibility problem. Vietnam J. Math. 50, 1–16 (2021) Censor,Y.: Weak and strong superiorization: between feasibility-seeking and minimization. Analele Universitatii" Ovidius" Constanta-Seria Matematica, 23(3), 41–54 (2015) MannWRMean value methods in iterationProc. Am. Math. Soc.1953435065105484610.1090/S0002-9939-1953-0054846-30050.11603 IshikawaSFixed points by a new iteration methodProc. Am. Math. Soc.197444114715033646910.1090/S0002-9939-1974-0336469-50286.47036 DavidiaRHermanaGCensorYPerturbation-resilient block-iterative projection methods with application to image reconstruction from projectionsInt. Trans. Oper. Res.200916505524253825310.1111/j.1475-3995.2009.00695.x AgarwalRPO’ReganDSahuDRFixed Point Theory for Lipschitzian-Type Mappings with Applications2009New YorkSpringer1176.47037 ButnariuDDavidiRHermanGTKazantsevIGStable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problemsIEEE J. Sel. Top. Signal Process.2007154054710.1109/JSTSP.2007.910263 Gürsoy, F.: A Picard-S iterative method for approximating fixed point of weak contraction mappings. Filomat 30(10), 2829–2845 (2016) OpialZWeak convergence of the sequence of successive approximations for nonexpansive mappingsBull. Am. Math. Soc.196773459159721130110.1090/S0002-9904-1967-11761-00179.19902 GürsoyFErtürkMAbbasMA Picard-type iterative algorithm for general variational inequalities and nonexpansive mappingsNumer. Algorithms2020833867883406435610.1007/s11075-019-00706-w1513.47120 BonackerEGibaliAKüferKHAccelerating two projection methods via perturbations with application to intensity-modulated radiation therapyAppl. Math. Optim.2021832881914423980310.1007/s00245-019-09571-41468.65069 Gürsoy, F., Karakaya, V.: A Picard-S hybrid type iteration method for solving a differential equation with retarted argument. arXiv:1403.2546 (2014) JinWCensorYJiangMBounded perturbation resilience of projected scaled gradient methodsComput. Optim. Appl.2016632365392345744510.1007/s10589-015-9777-x1339.90262 CensorYZaslavskiAJConvergence and perturbation resilience of dynamic string-averaging projection methodsComput. Optim. Appl.2013546576300341710.1007/s10589-012-9491-x1285.90079 ErtürkMGürsoyFŞimşekNS-iterative algorithm for solving variational inequalitiesInt. J. Comput. Math.2021983435448422761110.1080/00207160.2020.17554301483.49014 NoorMANew approximation schemes for general variational inequalitiesJ. Math. Anal. Appl.2000251217229179040610.1006/jmaa.2000.70420964.49007 AgarwalRPReganDOSahuDRIterative construction of fixed points of nearly asymptotically nonexpansive mappingsJ. Nonlinear Convex Anal.20078617923146661134.47047 Picard, E.: Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. Journal de Mathématiques pures et appliquées 6, 145–210 (1890) BaillonJBHaddadGQuelques proprietes des operateurs angle-bornes et n-cycliquement monotonesIsr. J. Math.19772613715050027910.1007/BF030076640352.47023 Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010) ErtürkMGürsoyFSome convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operatorsMath. Bohem.201914416983393419810.21136/MB.2018.0085-171474.47144 Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, vol. 28 (1990) Xu, H.K.: Bounded perturbation resilience and superiorization techniques for the projected scaled gradient method. Inverse Probl. 33(4) (2017) ChughRKumarVKumarSStrong Convergence of a new three step iterative scheme in Banach spacesAm. J. Comput. Math.2012234535710.4236/ajcm.2012.24048 Polyak, B.T.: Introduction to optimization, ser. Translations series in mathematics and engineering, Optimization Software. Optimization Software Inc. Publications, New York (1987) XuHKAveraged mappings and the gradient-projection algorithmJ. Optim. Theory Appl.20111502360378281892610.1007/s10957-011-9837-z1233.90280 RP Agarwal (1961_CR2) 2007; 8 D Butnariu (1961_CR6) 2007; 1 M Ertürk (1961_CR14) 2020; 21 G Herman (1961_CR22) 2014; 8466 GT Herman (1961_CR21) 2012; 39 F Gürsoy (1961_CR17) 2020; 83 M Ertürk (1961_CR12) 2019; 144 1961_CR20 S Ishikawa (1961_CR23) 1974; 44 W Phuengrattana (1961_CR31) 2011; 235 W Takahashi (1961_CR34) 2009 RP Agarwal (1961_CR1) 2009 HK Xu (1961_CR36) 2011; 150 E Bonacker (1961_CR5) 2021; 83 MA Noor (1961_CR28) 2000; 251 M Ertürk (1961_CR13) 2018; 19 WR Mann (1961_CR26) 1953; 4 DR Sahu (1961_CR33) 2011; 12 1961_CR3 1961_CR35 Y Censor (1961_CR8) 2013; 54 R Chugh (1961_CR10) 2012; 2 1961_CR37 1961_CR30 JB Baillon (1961_CR4) 1977; 26 1961_CR7 1961_CR32 1961_CR9 M Ertürk (1961_CR15) 2021; 98 Z Opial (1961_CR29) 1967; 73 R Davidia (1961_CR11) 2009; 16 1961_CR16 1961_CR18 1961_CR19 ES Leviton (1961_CR25) 1966; 6 T Nikazad (1961_CR27) 2012; 28 W Jin (1961_CR24) 2016; 63 |
| References_xml | – reference: ChughRKumarVKumarSStrong Convergence of a new three step iterative scheme in Banach spacesAm. J. Comput. Math.2012234535710.4236/ajcm.2012.24048 – reference: SahuDRApplications of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory20111218720427970801281.47053 – reference: BaillonJBHaddadGQuelques proprietes des operateurs angle-bornes et n-cycliquement monotonesIsr. J. Math.19772613715050027910.1007/BF030076640352.47023 – reference: BonackerEGibaliAKüferKHAccelerating two projection methods via perturbations with application to intensity-modulated radiation therapyAppl. Math. Optim.2021832881914423980310.1007/s00245-019-09571-41468.65069 – reference: Polyak, B.T.: Introduction to optimization, ser. Translations series in mathematics and engineering, Optimization Software. Optimization Software Inc. Publications, New York (1987) – reference: HermanGTGarduñoEDavidiRCensorYSuperiorization: an optimization heuristic for medical physicsMed. Phys.20123995532554610.1118/1.4745566 – reference: JinWCensorYJiangMBounded perturbation resilience of projected scaled gradient methodsComput. Optim. Appl.2016632365392345744510.1007/s10589-015-9777-x1339.90262 – reference: CensorYZaslavskiAJConvergence and perturbation resilience of dynamic string-averaging projection methodsComput. Optim. Appl.2013546576300341710.1007/s10589-012-9491-x1285.90079 – reference: Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010) – reference: LevitonESPolyakBTConstrained minimization problemsUSSR Comput. Math. Math. Phys.1966615010.1016/0041-5553(66)90114-5 – reference: OpialZWeak convergence of the sequence of successive approximations for nonexpansive mappingsBull. Am. Math. Soc.196773459159721130110.1090/S0002-9904-1967-11761-00179.19902 – reference: ErtürkMGürsoyFŞimşekNS-iterative algorithm for solving variational inequalitiesInt. J. Comput. Math.2021983435448422761110.1080/00207160.2020.17554301483.49014 – reference: MannWRMean value methods in iterationProc. Am. Math. Soc.1953435065105484610.1090/S0002-9939-1953-0054846-30050.11603 – reference: Picard, E.: Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. Journal de Mathématiques pures et appliquées 6, 145–210 (1890) – reference: Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, vol. 28 (1990) – reference: NikazadTDavidiRHermanGTAccelerated perturbation-resilient block-iterative projection methods with application to image reconstructionInverse Probl.2012283288853010.1088/0266-5611/28/3/0350051261.94014 – reference: AgarwalRPO’ReganDSahuDRFixed Point Theory for Lipschitzian-Type Mappings with Applications2009New YorkSpringer1176.47037 – reference: ErtürkMGürsoyFSome convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operatorsMath. Bohem.201914416983393419810.21136/MB.2018.0085-171474.47144 – reference: ErtürkMGursoyFAnsariQHKarakayaVPicard type iterative method with applications to minimization problems and split feasibility problmesJ. Nonlinear Convex Anal.2020214943951410114207347531 – reference: ErtürkMGursoyFAnsariQHKarakayaVModified picard type iterative algorithm for nonexpansive mappingsJ. Nonlinear Convex Anal.201819691993338301611451.47004 – reference: DavidiaRHermanaGCensorYPerturbation-resilient block-iterative projection methods with application to image reconstruction from projectionsInt. Trans. Oper. Res.200916505524253825310.1111/j.1475-3995.2009.00695.x – reference: PhuengrattanaWSuantaiSOn the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary intervalJ. Comput. Appl. Math.201123530063014277128310.1016/j.cam.2010.12.0221215.65095 – reference: Ertürk, M., Kızmaz, A.: A new gradient projection algorithm for convex minimization problem and its application to split feasibility problem. Vietnam J. Math. 50, 1–16 (2021) – reference: TakahashiWIntroduction to Nonlinear and Convex Analysis2009YokohamaYokohama Publishers1183.46001 – reference: Gürsoy, F., Karakaya, V.: A Picard-S hybrid type iteration method for solving a differential equation with retarted argument. arXiv:1403.2546 (2014) – reference: Gürsoy, F.: A Picard-S iterative method for approximating fixed point of weak contraction mappings. Filomat 30(10), 2829–2845 (2016) – reference: NoorMANew approximation schemes for general variational inequalitiesJ. Math. Anal. Appl.2000251217229179040610.1006/jmaa.2000.70420964.49007 – reference: Xu, H.K.: Bounded perturbation resilience and superiorization techniques for the projected scaled gradient method. Inverse Probl. 33(4) (2017) – reference: IshikawaSFixed points by a new iteration methodProc. Am. Math. Soc.197444114715033646910.1090/S0002-9939-1974-0336469-50286.47036 – reference: HermanGSuperiorization for image analysisCombin. Lect. Notes Comput. Sci.201484661732132501486.68232 – reference: Ansari,Q. H.: Topics in nonlinear analysis and optimization. World Education. Delhi (2012) – reference: Censor, Y., Davidi, R., Herman,G.T.: Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 26(6), 65008 (2010) – reference: XuHKAveraged mappings and the gradient-projection algorithmJ. Optim. Theory Appl.20111502360378281892610.1007/s10957-011-9837-z1233.90280 – reference: ButnariuDDavidiRHermanGTKazantsevIGStable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problemsIEEE J. Sel. Top. Signal Process.2007154054710.1109/JSTSP.2007.910263 – reference: Censor,Y.: Weak and strong superiorization: between feasibility-seeking and minimization. Analele Universitatii" Ovidius" Constanta-Seria Matematica, 23(3), 41–54 (2015) – reference: GürsoyFErtürkMAbbasMA Picard-type iterative algorithm for general variational inequalities and nonexpansive mappingsNumer. Algorithms2020833867883406435610.1007/s11075-019-00706-w1513.47120 – reference: AgarwalRPReganDOSahuDRIterative construction of fixed points of nearly asymptotically nonexpansive mappingsJ. Nonlinear Convex Anal.20078617923146661134.47047 – volume: 4 start-page: 506 issue: 3 year: 1953 ident: 1961_CR26 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1953-0054846-3 – volume: 44 start-page: 147 issue: 1 year: 1974 ident: 1961_CR23 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1974-0336469-5 – volume-title: Introduction to Nonlinear and Convex Analysis year: 2009 ident: 1961_CR34 – volume: 1 start-page: 540 year: 2007 ident: 1961_CR6 publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2007.910263 – ident: 1961_CR7 doi: 10.1088/0266-5611/26/6/065008 – volume: 144 start-page: 69 issue: 1 year: 2019 ident: 1961_CR12 publication-title: Math. Bohem. doi: 10.21136/MB.2018.0085-17 – volume: 251 start-page: 217 year: 2000 ident: 1961_CR28 publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.2000.7042 – volume: 8 start-page: 61 year: 2007 ident: 1961_CR2 publication-title: J. Nonlinear Convex Anal. – volume: 98 start-page: 435 issue: 3 year: 2021 ident: 1961_CR15 publication-title: Int. J. Comput. Math. doi: 10.1080/00207160.2020.1755430 – volume: 235 start-page: 3006 year: 2011 ident: 1961_CR31 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2010.12.022 – volume: 21 start-page: 943 issue: 4 year: 2020 ident: 1961_CR14 publication-title: J. Nonlinear Convex Anal. – volume: 16 start-page: 505 year: 2009 ident: 1961_CR11 publication-title: Int. Trans. Oper. Res. doi: 10.1111/j.1475-3995.2009.00695.x – ident: 1961_CR37 doi: 10.1088/1361-6420/33/4/044008 – volume: 2 start-page: 345 year: 2012 ident: 1961_CR10 publication-title: Am. J. Comput. Math. doi: 10.4236/ajcm.2012.24048 – volume: 19 start-page: 919 issue: 6 year: 2018 ident: 1961_CR13 publication-title: J. Nonlinear Convex Anal. – volume: 150 start-page: 360 issue: 2 year: 2011 ident: 1961_CR36 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-011-9837-z – ident: 1961_CR30 – volume: 28 issue: 3 year: 2012 ident: 1961_CR27 publication-title: Inverse Probl. doi: 10.1088/0266-5611/28/3/035005 – ident: 1961_CR16 doi: 10.1007/s10013-020-00463-7 – ident: 1961_CR32 – volume: 26 start-page: 137 year: 1977 ident: 1961_CR4 publication-title: Isr. J. Math. doi: 10.1007/BF03007664 – volume: 63 start-page: 365 issue: 2 year: 2016 ident: 1961_CR24 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-015-9777-x – ident: 1961_CR35 doi: 10.1088/0266-5611/26/10/105018 – volume: 12 start-page: 187 year: 2011 ident: 1961_CR33 publication-title: Fixed Point Theory – volume: 83 start-page: 881 issue: 2 year: 2021 ident: 1961_CR5 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-019-09571-4 – ident: 1961_CR18 doi: 10.2298/FIL1610829G – volume: 54 start-page: 65 year: 2013 ident: 1961_CR8 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-012-9491-x – volume: 83 start-page: 867 issue: 3 year: 2020 ident: 1961_CR17 publication-title: Numer. Algorithms doi: 10.1007/s11075-019-00706-w – volume: 73 start-page: 591 issue: 4 year: 1967 ident: 1961_CR29 publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1967-11761-0 – ident: 1961_CR3 – ident: 1961_CR19 – volume: 6 start-page: 1 year: 1966 ident: 1961_CR25 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(66)90114-5 – ident: 1961_CR9 doi: 10.1515/auom-2015-0046 – volume-title: Fixed Point Theory for Lipschitzian-Type Mappings with Applications year: 2009 ident: 1961_CR1 – volume: 8466 start-page: 1 year: 2014 ident: 1961_CR22 publication-title: Combin. Lect. Notes Comput. Sci. – ident: 1961_CR20 doi: 10.1017/CBO9780511526152 – volume: 39 start-page: 5532 issue: 9 year: 2012 ident: 1961_CR21 publication-title: Med. Phys. doi: 10.1118/1.4745566 |
| SSID | ssj0061199 |
| Score | 2.3116386 |
| Snippet | In this article, we use the superiorization methodology to investigate the bounded perturbations resilience of the gradient projection algorithm proposed in... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1957 |
| SubjectTerms | Computational Intelligence Mathematics Mathematics and Statistics Numerical and Computational Physics Operations Research/Decision Theory Optimization Original Paper Simulation |
| Title | Superiorization and bounded perturbation resilience of a gradient projection algorithm solving the convex minimization problem |
| URI | https://link.springer.com/article/10.1007/s11590-022-01961-y |
| Volume | 17 |
| WOSCitedRecordID | wos000911010100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1862-4480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061199 issn: 1862-4472 databaseCode: RSV dateStart: 20070101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPejBt1hf5OBNF7pNzCZHEYsXi9givS1JNlsLfcjuVuzF3-4km20tSEEvC0smD5JJJo-Z70PoCqwQ4zLVgWoqEVA4rgVScwYfEzVkqBkhypFNRO027_XEsw8Kyytv9-pJ0q3Ui2A3sLyNwHqfW0yXMJitow0wd9xOx5fOa7X-srBkjQy5jQeiUdOHyvxexrI5Wn4LdSamtfu_xu2hHb-lxHelDuyjNTM-QNs_gAbh72mOzpofoq_O1OIbTzIfg4nlOMHK8iuZBEMKWCFVJsBZfDB0kx9PUixxP3MeYgX2Fzgu87APJRVvIwxqbK8nMFSFnTf7J7bIJaOqGk9ec4S6rYfu_WPgeRgC3RRhERgmqU6F4Q2RKkZTJZKIyVBJmQh5G0WKcMd7pZlFV9NCKFhAE2KopIwTRY5RbTwZmxOElaBwIoNthaYJ1ZCdpzIChaAJ7NJIQuoorEYj1h6j3FJlDOMFurLt6Bg6OnYdHc_q6Hqe571E6FgpfVMNYOxna75C_PRv4mdoy9LRl7GK56hWZFNzgTb1RzHIs0unpt-xJuZJ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzivefBNC-sa0-ZRxDFxG-KG7K3k0s7B1snaiXvxt3uSppsDGehLoeTkQnKSk8s534fQFVghGvBYOqIqmEPguOZwGVD4RH6Fu5J6njBkE36rFXS77NkGhaWFt3vxJGlW6nmwG1jeiqO9zzWmi-tMV9EaAYulHfle2q_F-kvdnDXSDXQ8EPGrNlTm9zIWzdHiW6gxMbWd_zVuF23bLSW-y3VgD61EyT7a-gE0CH_NGTpreoC-2hONbzwa2xhMzBOFheZXihSGFLBCIk-As3h_YCY_HsWY497YeIhl2F7gmMyDHpSUvQ0xqLG-nsBQFTbe7J9YI5cMi2osec0h6tQeOvd1x_IwOLLK3MyJKCcyZlFQYbGgJBZM-ZS7gnPF-K3vCy8wvFeSanQ1yZiABVR5EeGEBp7wjlApGSXRMcKCETiRwbZCEkUkZA9i7oNCEAW7NE95ZeQWoxFKi1GuqTIG4RxdWXd0CB0dmo4Op2V0PcvzniN0LJW-KQYwtLM1XSJ-8jfxS7RR7zQbYeOx9XSKNjU1fR63eIZK2XgSnaN1-ZH10_GFUdlvhUrpLQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzivefBNy9Y1psmjqENRx2BD9lZyaedg68bWiXvxt3uStruADMSXQslJUpLTnJzknO9D6AqsEGUiUo6sSO4QcNccoRiFR-iXhauo50lLNuHXaqzV4vW5LH4b7Z5fSaY5DQalKU5KAx2VZolvYIXLjolEN_gurjNZRWvEkAYZf73xnq_F1E0ZJF1mcoOIX8nSZn5vY9E0Ld6LWnNT3fn_h-6i7Wyrie9S3dhDK2G8j7bmAAjh7W2K2jo6QN-NscE97g-z3EwsYo2l4V0KNYYSsE4yLQAfvdO1iwLuR1jg9tBGjiU4O9ixlbttaCn56GFQb3NsgaErbKPcv7BBNOnl3WSkNoeoWX1s3j85GT-DoyrcTZyQCqIiHrIyjyQlkeTap8KVQmgubn1feszyYSlqUNcU5xIWVu2FRBDKPOkdoULcj8NjhCUn4KnBdkMRTRRUZ5HwQVGIht2bp70icvOZCVSGXW4oNLrBDHXZDHQAAx3YgQ4mRXQ9rTNIkTuWSt_kkxlkf_FoifjJ38Qv0Ub9oRq8PtdeTtGmYaxP0xnPUCEZjsNztK4-k85oeGG19wdwQvIR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superiorization+and+bounded+perturbation+resilience+of+a+gradient+projection+algorithm+solving+the+convex+minimization+problem&rft.jtitle=Optimization+letters&rft.au=Ert%C3%BCrk%2C+M%C3%BCzeyyen&rft.au=Salk%C4%B1m%2C+Ahmet&rft.date=2023-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=17&rft.issue=8&rft.spage=1957&rft.epage=1978&rft_id=info:doi/10.1007%2Fs11590-022-01961-y&rft.externalDocID=10_1007_s11590_022_01961_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon |