Some q-Supercongruences from a Quadratic Transformation by Rahman

Inspired by the recent work on q -congruences and a quadratic transformation formula of Rahman, we provide some new q -supercongruences. By taking parameters specialization in one of our results, we obtain a new Ramanujan-type supercongruence, which has the same right-hand side as Van Hamme’s (G.2)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Resultate der Mathematik Ročník 77; číslo 1
Hlavní autoři: Liu, Yudong, Wang, Xiaoxia
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.02.2022
Témata:
ISSN:1422-6383, 1420-9012
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Inspired by the recent work on q -congruences and a quadratic transformation formula of Rahman, we provide some new q -supercongruences. By taking parameters specialization in one of our results, we obtain a new Ramanujan-type supercongruence, which has the same right-hand side as Van Hamme’s (G.2) supercongruence for p ≡ 1 ( mod 4 ) . We also formulate some related challenging conjectures on supercongruences and q -supercongruences.
AbstractList Inspired by the recent work on q -congruences and a quadratic transformation formula of Rahman, we provide some new q -supercongruences. By taking parameters specialization in one of our results, we obtain a new Ramanujan-type supercongruence, which has the same right-hand side as Van Hamme’s (G.2) supercongruence for p ≡ 1 ( mod 4 ) . We also formulate some related challenging conjectures on supercongruences and q -supercongruences.
ArticleNumber 44
Author Liu, Yudong
Wang, Xiaoxia
Author_xml – sequence: 1
  givenname: Yudong
  surname: Liu
  fullname: Liu, Yudong
  organization: Department of Mathematics, Shanghai University
– sequence: 2
  givenname: Xiaoxia
  orcidid: 0000-0002-8952-1632
  surname: Wang
  fullname: Wang, Xiaoxia
  email: xiaoxiawang@shu.edu.cn
  organization: Department of Mathematics, Shanghai University
BookMark eNp9kL9OwzAQhy1UJNrCCzDlBQw-GzvxWFX8kyohaJkt27FLqsYudjL07QkpE0Onuxu-u_t9MzQJMTiEboHcASHlfSaEUI4JBUyAC4bLCzSFB0qwJEAnY0-xYBW7QrOcd4RwSoFO0WIdW1d843V_cMnGsE29C9blwqfYFrp473WddNfYYpN0yD6mdphiKMyx-NBfrQ7X6NLrfXY3f3WOPp8eN8sXvHp7fl0uVthSCR123AAIx6AyTEheUSYNF054OjxiWe2pd6WpdClLVhltoa69kQa8FDWn4Ngc0dNem2LOyXl1SE2r01EBUb8S1EmCGiSoUYIqB6j6B9mmGwN0STf78yg7oXm4E7YuqV3sUxginqN-AAFyc0Y
CitedBy_id crossref_primary_10_1016_j_jmaa_2022_126062
crossref_primary_10_1007_s00025_022_01772_8
crossref_primary_10_1216_rmj_2025_55_265
crossref_primary_10_1016_j_bulsci_2025_103615
crossref_primary_10_1016_j_jmaa_2024_128712
crossref_primary_10_1016_j_bulsci_2023_103339
crossref_primary_10_1016_j_aam_2022_102376
crossref_primary_10_1007_s11139_022_00558_4
crossref_primary_10_1007_s11139_022_00597_x
crossref_primary_10_1007_s13398_022_01364_9
crossref_primary_10_1007_s00025_025_02482_7
crossref_primary_10_1007_s00025_022_01635_2
crossref_primary_10_1007_s00025_024_02237_w
crossref_primary_10_1007_s13163_022_00442_1
crossref_primary_10_1017_S0004972722000612
crossref_primary_10_1515_forum_2024_0101
crossref_primary_10_1007_s10998_022_00452_y
crossref_primary_10_1007_s40840_025_01912_7
Cites_doi 10.1080/10236198.2019.1622690
10.1007/s00025-020-01272-7
10.1017/CBO9780511526251
10.5802/crmath.35
10.1090/proc/14664
10.1080/10652469.2018.1454448
10.4064/cm7686-11-2018
10.1080/10236198.2021.1900140
10.1007/s00365-020-09524-z
10.1007/s00025-020-01195-3
10.1142/S1793042118501038
10.1090/hmath/009
10.1007/s00013-008-2828-0
10.1090/S0002-9939-08-09389-1
10.1090/proc/14374
10.1142/S1793042119501069
10.1016/j.aim.2019.02.008
10.1016/j.jmaa.2021.125238
10.1007/s11139-018-0096-6
10.1016/j.aam.2020.102003
10.1080/10236198.2020.1862808
10.1007/s10998-021-00432-8
10.1080/10236198.2018.1485669
10.4064/cm133-1-9
10.1007/s00025-019-1126-4
10.1007/s13398-020-00923-2
10.1016/j.jnt.2009.01.013
10.1007/s11856-020-2081-1
10.1142/S1793042121500329
10.1007/s11139-019-00192-7
10.1007/s11139-007-9074-0
10.1007/s00026-019-00461-8
10.1007/s00025-020-01203-6
10.1016/j.jmaa.2019.07.062
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
DBID AAYXX
CITATION
DOI 10.1007/s00025-021-01563-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-9012
ExternalDocumentID 10_1007_s00025_021_01563_7
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11661032
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RHV
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YNT
Z45
ZMTXR
ZWQNP
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c291t-e5b116e318b36958239b56e6f2221c3df2fe7b8a79738bac1ddfb9b1f96d521e3
IEDL.DBID RSV
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000736720000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1422-6383
IngestDate Sat Nov 29 03:47:25 EST 2025
Tue Nov 18 21:56:28 EST 2025
Fri Feb 21 02:46:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Primary 33D15
supercongruences
cyclotomic polynomial
11B65
Basic hypergeometric series
congruences
Secondary 11A07
Rahman’s transformation formula
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e5b116e318b36958239b56e6f2221c3df2fe7b8a79738bac1ddfb9b1f96d521e3
ORCID 0000-0002-8952-1632
ParticipantIDs crossref_primary_10_1007_s00025_021_01563_7
crossref_citationtrail_10_1007_s00025_021_01563_7
springer_journals_10_1007_s00025_021_01563_7
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle Resultate der Mathematik
PublicationTitle Resultate der Mathematik
PublicationTitleAbbrev Results Math
PublicationYear 2022
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References ChenXChuWHidden q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogues of Ramanujan-like π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-seriesRamanujan J.2021543625648423171410.1007/s11139-019-00192-7
GorodetskyOq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Congruences, with applications to supercongruences and the cyclic sieving phenomenonInt. J. Number Theory201915919191968401552010.1142/S1793042119501069
McCarthyDOsburnRA p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-adic analogue of a formula of RamanujanArch. Math. (Basel)2008916492504246586810.1007/s00013-008-2828-0
GuilleraJHypergeometric identities for 10 extended Ramanujan-type seriesRamanujan J.2008152219234237757710.1007/s11139-007-9074-0
ZudilinWRamanujan-type supercongruencesJ. Number Theory2009129818481857252270810.1016/j.jnt.2009.01.013
ZudilinWCongruences for q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-binomial coefficientsAnn. Combin.20192311231135403957910.1007/s00026-019-00461-8
Guo, V.J.W.: Proof of some q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-supercongruences modulo the fourth power of a cyclotomic polynomial, Results Math.75, Art. 77 (2020)
LiuJ-COn a congruence involving q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Catalan numbersC. R. Math. Acad. Sci. Paris202035821121541181771471.11091
Guo, V.J.W.: A further q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogue of Van Hamme’s (H.2) supercongruence for primes p≡3(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 3 ~({\rm mod} \; 4)$$\end{document}. Int. J. Number Theory 17, 1201–1206 (2021)
HouQ-HKrattenthalerCSunZ-WOn q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogues of some series for π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} and π2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^2$$\end{document}Proc. Amer. Math. Soc.2019147519531961393767310.1090/proc/14374
WangXYueMA q-analogue of a Dwork-type supercongruencesB. Aust. Math. Soc.202110322033104229498
GuoVJWSchlosserMJSome q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-supercongruences from transformation formulas for basic hypergeometric seriesConstr. Approx.202153155200420525610.1007/s00365-020-09524-z
Berndt, B.C., Rankin, R.A.: Ramanujan, Letters and Commentary, History of Mathematics 9, Amer. Math. Soc., Providence, RI; London Math. Soc., London (1995)
GuoVJWZudilinWRamanujan-type formulae for 1/π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/\pi $$\end{document}: q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analoguesIntegral Transforms Spec. Funct.2018297505513380655310.1080/10652469.2018.1454448
GuoVJWLiuJ-Cq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Analogues of two Ramanujan-type formulas for 1/π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/\pi $$\end{document}J. Difference Equ. Appl.201824813681373385116710.1080/10236198.2018.1485669
GuoVJWZudilinWA q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-microscope for supercongruencesAdv. Math.2019346329358391079810.1016/j.aim.2019.02.008
TaurasoRSome q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogs of congruences for central binomial sumsColloq. Math.2013133133143313942010.4064/cm133-1-9
GuoVJWSchlosserMJA family of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-hypergeometric congruences modulo the fourth power of a cyclotomic polynomialIsrael J. Math.2020240821835419315210.1007/s11856-020-2081-1
ChuWq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Series reciprocities and further π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-formulaKodai Math.201841351253038707011408.33017
Sun, Z.-W.: Two q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogues of Euler’s formula ζ(2)=π2/6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (2)=\pi ^2/6$$\end{document}. Colloq. Math. 158(2), 313–320 (2019)
Guo, V.J.W., Schlosser, M.J.: A new family of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-supercongruences modulo the fourth power of a cyclotomic polynomial, Results Math.75, Art. 155 (2020)
GasperGRahmanMBasic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications20042CambridgeCambridge University Press10.1017/CBO9780511526251
Guo, V.J.W.: Some variations of a ‘divergent’ Ramanujan-type q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-supercongruence. J. Difference Equ. Appl. 27, 376–388 (2021)
Guo, V.J.W., Schlosser, M.J.: Some new q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-congruences for truncated basic hypergeometric series: even powers, Results Math.75, Art. 1 (2020)
Hardy, G.H.: A chapter from Ramanujan’s note-book. Proc. Cambridge Philos. Soc. 21(2), 492–503 (1923)
GuoVJWSchlosserMJProof of a basic hypergeometric supercongruence modulo the fifth power of a cyclotomic
W Chu (1563_CR3) 2018; 41
1563_CR31
W Zudilin (1563_CR39) 2009; 129
Q-H Hou (1563_CR20) 2019; 147
1563_CR10
VJW Guo (1563_CR13) 2020; 240
1563_CR32
1563_CR35
1563_CR12
1563_CR34
X Chen (1563_CR2) 2021; 54
VJW Guo (1563_CR11) 2019; 25
C Wei (1563_CR38) 2020; 148
VJW Guo (1563_CR18) 2019; 346
J-C Liu (1563_CR23) 2020; 358
R Tauraso (1563_CR33) 2013; 133
1563_CR14
VJW Guo (1563_CR17) 2018; 29
1563_CR36
1563_CR19
D McCarthy (1563_CR27) 2008; 91
E Mortenson (1563_CR29) 2008; 136
Y Liu (1563_CR25) 2021; 51
1563_CR1
O Gorodetsky (1563_CR5) 2019; 15
J Guillera (1563_CR6) 2008; 15
VJW Guo (1563_CR15) 2021; 53
1563_CR22
Y Morita (1563_CR28) 1975; 22
H-X Ni (1563_CR30) 2018; 14
1563_CR24
1563_CR9
L Li (1563_CR21) 2021; 27
W Zudilin (1563_CR40) 2019; 23
1563_CR7
VJW Guo (1563_CR16) 2018; 24
1563_CR26
G Gasper (1563_CR4) 2004
VJW Guo (1563_CR8) 2020; 52
X Wang (1563_CR37) 2021; 103
References_xml – reference: Sun, Z.-W.: Two q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogues of Euler’s formula ζ(2)=π2/6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (2)=\pi ^2/6$$\end{document}. Colloq. Math. 158(2), 313–320 (2019)
– reference: ZudilinWRamanujan-type supercongruencesJ. Number Theory2009129818481857252270810.1016/j.jnt.2009.01.013
– reference: GuoVJWLiuJ-Cq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Analogues of two Ramanujan-type formulas for 1/π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/\pi $$\end{document}J. Difference Equ. Appl.201824813681373385116710.1080/10236198.2018.1485669
– reference: TaurasoRSome q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogs of congruences for central binomial sumsColloq. Math.2013133133143313942010.4064/cm133-1-9
– reference: GuilleraJHypergeometric identities for 10 extended Ramanujan-type seriesRamanujan J.2008152219234237757710.1007/s11139-007-9074-0
– reference: GuoVJWZudilinWRamanujan-type formulae for 1/π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/\pi $$\end{document}: q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analoguesIntegral Transforms Spec. Funct.2018297505513380655310.1080/10652469.2018.1454448
– reference: Guo, V.J.W., Schlosser, M.J.: A new family of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-supercongruences modulo the fourth power of a cyclotomic polynomial, Results Math.75, Art. 155 (2020)
– reference: GasperGRahmanMBasic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications20042CambridgeCambridge University Press10.1017/CBO9780511526251
– reference: MortensonEA p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-adic supercongruence conjecture of van HammeProc. Am. Math. Soc.20081361243214328243104610.1090/S0002-9939-08-09389-1
– reference: GorodetskyOq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Congruences, with applications to supercongruences and the cyclic sieving phenomenonInt. J. Number Theory201915919191968401552010.1142/S1793042119501069
– reference: GuoVJWq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Analogues of three Ramanujan-type formulas for 1/π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/\pi $$\end{document}Ramanujan J.2020521123132408321910.1007/s11139-018-0096-6
– reference: GuoVJWSchlosserMJSome q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-supercongruences from transformation formulas for basic hypergeometric seriesConstr. Approx.202153155200420525610.1007/s00365-020-09524-z
– reference: ChenXChuWHidden q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogues of Ramanujan-like π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-seriesRamanujan J.2021543625648423171410.1007/s11139-019-00192-7
– reference: LiLSome q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-supercongruences for truncated forms of squares of basic hypergeometric seriesJ. Difference Equ. Appl.2021271625422477210.1080/10236198.2020.1862808
– reference: Guo, V.J.W., Schlosser, M.J.: Some new q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-congruences for truncated basic hypergeometric series: even powers, Results Math.75, Art. 1 (2020)
– reference: GuoVJWSchlosserMJA family of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-hypergeometric congruences modulo the fourth power of a cyclotomic polynomialIsrael J. Math.2020240821835419315210.1007/s11856-020-2081-1
– reference: Wang, X., Yu, M.: Some generalizations of a congruence by Sun and Tauraso. Periodica Mathematica Hungarica, https://doi.org/10.1007/s10998-021-00432-8
– reference: LiuYWangXq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Analogues of the (G.2) supercongruence of Van HammeRocky Mountain J. Math.20215141329134042988501469.11004
– reference: WeiCq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Analogues of several π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-formulasProc. Am. Math. Soc.202014822872296408087510.1090/proc/14664
– reference: Liu, J-C., Petrov, F.: Congruences on sums of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-binomial coefficent, Adv. Appl. Math.116, Art. 102003 (2020)
– reference: NiH-XPanHOn a conjectured q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-congruence of Guo and ZengInt. J. Number Theory201814616991707382795510.1142/S1793042118501038
– reference: Ni, H.-X., Pan, H.: Some symmetric q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-congruences modulo the square of a cyclotomic polynomial, J. Math. Anal. Appl.481, Art. 123372 (2020)
– reference: Liu, Y., Wang, X.: q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Analogues of two Ramanujan-type supercongruences, J. Math. Anal. Appl.502, Art. 125238 (2021)
– reference: MoritaYA p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-adic supercongruence of the Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} functionJ. Fac. Sci. Univ. Tokyo1975222552660308.12003
– reference: Wang, X., Yue, M.: Some q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-supercongruences from Watson’s 8ϕ7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_8\phi _7$$\end{document} transformation formula, Results Math.75, Art. 71 (2020)
– reference: Guo, V.J.W.: Some variations of a ‘divergent’ Ramanujan-type q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-supercongruence. J. Difference Equ. Appl. 27, 376–388 (2021)
– reference: Guo, V.J.W.: A further q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogue of Van Hamme’s (H.2) supercongruence for primes p≡3(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 3 ~({\rm mod} \; 4)$$\end{document}. Int. J. Number Theory 17, 1201–1206 (2021)
– reference: GuoVJWSchlosserMJProof of a basic hypergeometric supercongruence modulo the fifth power of a cyclotomic polynomialJ. Difference Equ. Appl.201925921929399695810.1080/10236198.2019.1622690
– reference: Van Hamme, L.: Some conjectures concerning partial sums of generalized hypergeometric series, in: p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. 192, Dekker, New York 223–236 (1997)
– reference: Li, L., Wang, S.-D.: Proof of a q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-supercongruence conjectured by Guo and Schlosser, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat.114, Art. 190 (2020)
– reference: GuoVJWZudilinWA q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-microscope for supercongruencesAdv. Math.2019346329358391079810.1016/j.aim.2019.02.008
– reference: ChuWq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Series reciprocities and further π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}-formulaKodai Math.201841351253038707011408.33017
– reference: Guo, V.J.W.: Proof of some q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-supercongruences modulo the fourth power of a cyclotomic polynomial, Results Math.75, Art. 77 (2020)
– reference: ZudilinWCongruences for q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-binomial coefficientsAnn. Combin.20192311231135403957910.1007/s00026-019-00461-8
– reference: HouQ-HKrattenthalerCSunZ-WOn q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-analogues of some series for π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} and π2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^2$$\end{document}Proc. Amer. Math. Soc.2019147519531961393767310.1090/proc/14374
– reference: LiuJ-COn a congruence involving q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Catalan numbersC. R. Math. Acad. Sci. Paris202035821121541181771471.11091
– reference: Berndt, B.C., Rankin, R.A.: Ramanujan, Letters and Commentary, History of Mathematics 9, Amer. Math. Soc., Providence, RI; London Math. Soc., London (1995)
– reference: WangXYueMA q-analogue of a Dwork-type supercongruencesB. Aust. Math. Soc.202110322033104229498
– reference: Hardy, G.H.: A chapter from Ramanujan’s note-book. Proc. Cambridge Philos. Soc. 21(2), 492–503 (1923)
– reference: McCarthyDOsburnRA p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-adic analogue of a formula of RamanujanArch. Math. (Basel)2008916492504246586810.1007/s00013-008-2828-0
– volume: 51
  start-page: 1329
  issue: 4
  year: 2021
  ident: 1563_CR25
  publication-title: Rocky Mountain J. Math.
– volume: 103
  start-page: 203
  issue: 2
  year: 2021
  ident: 1563_CR37
  publication-title: B. Aust. Math. Soc.
– volume: 25
  start-page: 921
  year: 2019
  ident: 1563_CR11
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236198.2019.1622690
– ident: 1563_CR14
  doi: 10.1007/s00025-020-01272-7
– volume-title: Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications
  year: 2004
  ident: 1563_CR4
  doi: 10.1017/CBO9780511526251
– volume: 358
  start-page: 211
  year: 2020
  ident: 1563_CR23
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.5802/crmath.35
– volume: 148
  start-page: 2287
  year: 2020
  ident: 1563_CR38
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/14664
– volume: 29
  start-page: 505
  issue: 7
  year: 2018
  ident: 1563_CR17
  publication-title: Integral Transforms Spec. Funct.
  doi: 10.1080/10652469.2018.1454448
– ident: 1563_CR32
  doi: 10.4064/cm7686-11-2018
– volume: 41
  start-page: 512
  issue: 3
  year: 2018
  ident: 1563_CR3
  publication-title: Kodai Math.
– ident: 1563_CR9
  doi: 10.1080/10236198.2021.1900140
– volume: 53
  start-page: 155
  year: 2021
  ident: 1563_CR15
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-020-09524-z
– ident: 1563_CR36
  doi: 10.1007/s00025-020-01195-3
– volume: 14
  start-page: 1699
  issue: 6
  year: 2018
  ident: 1563_CR30
  publication-title: Int. J. Number Theory
  doi: 10.1142/S1793042118501038
– ident: 1563_CR1
  doi: 10.1090/hmath/009
– volume: 91
  start-page: 492
  issue: 6
  year: 2008
  ident: 1563_CR27
  publication-title: Arch. Math. (Basel)
  doi: 10.1007/s00013-008-2828-0
– volume: 136
  start-page: 4321
  issue: 12
  year: 2008
  ident: 1563_CR29
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-08-09389-1
– volume: 147
  start-page: 1953
  issue: 5
  year: 2019
  ident: 1563_CR20
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/proc/14374
– ident: 1563_CR34
– volume: 15
  start-page: 1919
  issue: 9
  year: 2019
  ident: 1563_CR5
  publication-title: Int. J. Number Theory
  doi: 10.1142/S1793042119501069
– volume: 346
  start-page: 329
  year: 2019
  ident: 1563_CR18
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2019.02.008
– ident: 1563_CR19
– ident: 1563_CR26
  doi: 10.1016/j.jmaa.2021.125238
– volume: 52
  start-page: 123
  issue: 1
  year: 2020
  ident: 1563_CR8
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-018-0096-6
– ident: 1563_CR24
  doi: 10.1016/j.aam.2020.102003
– volume: 27
  start-page: 16
  year: 2021
  ident: 1563_CR21
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236198.2020.1862808
– ident: 1563_CR35
  doi: 10.1007/s10998-021-00432-8
– volume: 24
  start-page: 1368
  issue: 8
  year: 2018
  ident: 1563_CR16
  publication-title: J. Difference Equ. Appl.
  doi: 10.1080/10236198.2018.1485669
– volume: 133
  start-page: 133
  year: 2013
  ident: 1563_CR33
  publication-title: Colloq. Math.
  doi: 10.4064/cm133-1-9
– ident: 1563_CR12
  doi: 10.1007/s00025-019-1126-4
– ident: 1563_CR22
  doi: 10.1007/s13398-020-00923-2
– volume: 129
  start-page: 1848
  issue: 8
  year: 2009
  ident: 1563_CR39
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2009.01.013
– volume: 240
  start-page: 821
  year: 2020
  ident: 1563_CR13
  publication-title: Israel J. Math.
  doi: 10.1007/s11856-020-2081-1
– ident: 1563_CR10
  doi: 10.1142/S1793042121500329
– volume: 22
  start-page: 255
  year: 1975
  ident: 1563_CR28
  publication-title: J. Fac. Sci. Univ. Tokyo
– volume: 54
  start-page: 625
  issue: 3
  year: 2021
  ident: 1563_CR2
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-019-00192-7
– volume: 15
  start-page: 219
  issue: 2
  year: 2008
  ident: 1563_CR6
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-007-9074-0
– volume: 23
  start-page: 1123
  year: 2019
  ident: 1563_CR40
  publication-title: Ann. Combin.
  doi: 10.1007/s00026-019-00461-8
– ident: 1563_CR7
  doi: 10.1007/s00025-020-01203-6
– ident: 1563_CR31
  doi: 10.1016/j.jmaa.2019.07.062
SSID ssj0052212
Score 2.3820853
Snippet Inspired by the recent work on q -congruences and a quadratic transformation formula of Rahman, we provide some new q -supercongruences. By taking parameters...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Mathematics
Mathematics and Statistics
Title Some q-Supercongruences from a Quadratic Transformation by Rahman
URI https://link.springer.com/article/10.1007/s00025-021-01563-7
Volume 77
WOSCitedRecordID wos000736720000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1420-9012
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0052212
  issn: 1422-6383
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPejBt1hf5OBNA7ubzSY5ili8WLSt0tuS16pgt7XbCv57k-wDC1LQ--wSvp3MY2e-GQAuFCVxRlSGeKQ1ilmIkcCYIBMwESgqtFTSL5ug3S4bDvlDRQor6m73uiTpLXVDdgv86lXXUuDovxjRVbBm3R1z17HXf67trw0oyhpnbNMsq124osr8_o5Fd7RYC_UuprP9v8PtgK0qpITXpQ7sghWT74HN-2Yea7Fvjed4ZOAH6s8nZmoz4Jdp2T8NHbsECvg4F9qpgoKDH4HsOIfyC_bE60jkB-Cpczu4uUPV8gSkIh7OkCEyDBP3h1PihBMWYS5JYpLMBgShwjqLMkMlE5RTzKRQodaZ5DLMeKKtSzf4ELTycW6OACQxFZQam6kJGgeSSWKwTcsk00pGUrI2CGsMU1VNFncLLt7TZiayhye18KQenpS2wWXzzKScq7FU-qqGPa3uWLFE_Phv4idgI3KkBt-LfQpaM_sNzsC6-py9FdNzr1zfwATHgg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60CurBt1ife_CmC9lskt09ilgqtkXbKr2FfUUFm9amFfz3bp5YkILeZ0OYTOax830zAFwo6nuRryLEXa2RxzBBghAfGYcJR1GhpZLZsgna6bDBgD8UpLCkRLuXLcnMU1dkNydbvZpCClL6L0F0Gax4NmKlQL5u77n0vzahyHucni2zrHWRgirz-zPmw9F8LzQLMY2t_73cNtgsUkp4ndvADlgy8S7YaFfzWJM96zxHQwM_UG82NhNbAb9Mcvw0TNklUMDHmdCpKSjY_5HIjmIov2BXvA5FvA-eGrf9myYqlicg5XI8RcaXGAfpDackAfeZS7j0AxNENiHAiujIjQyVTFBOCZNCYa0jySWOeKBtSDfkANTiUWwOAfQ9Kig1tlIT1HMkk74htiyTTCvpSsnqAJc6DFUxWTxdcPEeVjORM_WEVj1hpp6Q1sFldWacz9VYKH1Vqj0s_rFkgfjR38TPwVqz326FrbvO_TFYd1OCQ4bLPgG1qf0ep2BVfU7fkslZZmjfJI3KZg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aRfTgW6zPHLxpcLPZ3WSPohZFLdVW6W3Ja1Ww29puBf-9yb5oQQrifRKWyWxmJjPffACcSOp7sS9jFLpKIY9hgjghPtIO446kXAkpMrIJ2myybjdsTaD4s273siSZYxrslKYkPR-o-LwCvjkZDattL7BQYILoPFjwLGmQzdfbL-VdbIKLvN7pmZTLWBopYDO_7zHtmqbropm7aaz9_0PXwWoRasKL3DY2wJxONsHKQzWndbRlLtV-T8NP1B4P9NDs_DrM-6qhRZ1ADh_HXFkTkbAzEeD2Eyi-4RN_6_FkGzw3rjuXN6ggVUDSDXGKtC8wDuzLpyBB6DOXhMIPdBCbQAFLomI31lQwTkNKmOASKxWLUOA4DJRx9ZrsgFrST_QugL5HOaXaZHCceo5gwtfEpGuCKSlcIVgd4FKfkSwmjlvii4-ompWcqScy6oky9US0Dk6rNYN83sZM6bPyCKLi3xvNEN_7m_gxWGpdNaL72-bdPlh2Le4ha9c-ALXUHMchWJRf6ftoeJTZ3A95ytNK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+q-Supercongruences+from+a+Quadratic+Transformation+by+Rahman&rft.jtitle=Resultate+der+Mathematik&rft.au=Liu%2C+Yudong&rft.au=Wang%2C+Xiaoxia&rft.date=2022-02-01&rft.issn=1422-6383&rft.eissn=1420-9012&rft.volume=77&rft.issue=1&rft_id=info:doi/10.1007%2Fs00025-021-01563-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00025_021_01563_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6383&client=summon