Universality of Linearized Message Passing for Phase Retrieval With Structured Sensing Matrices
In the phase retrieval problem one seeks to recover an unknown <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> dimensional signal vector <inline-formula> <tex-math notation="LaTeX">\mathbf {x} </tex-math></in...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on information theory Jg. 68; H. 11; S. 7545 - 7574 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In the phase retrieval problem one seeks to recover an unknown <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> dimensional signal vector <inline-formula> <tex-math notation="LaTeX">\mathbf {x} </tex-math></inline-formula> from <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> measurements of the form <inline-formula> <tex-math notation="LaTeX">y_{i} = |(\mathbf {A} \mathbf {x})_{i}| </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\mathbf {A} </tex-math></inline-formula> denotes the sensing matrix. Many algorithms for this problem are based on approximate message passing. For these algorithms, it is known that if the sensing matrix <inline-formula> <tex-math notation="LaTeX">\mathbf {A} </tex-math></inline-formula> is generated by sub-sampling <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> columns of a uniformly random (i.e., Haar distributed) orthogonal matrix, in the high dimensional asymptotic regime (<inline-formula> <tex-math notation="LaTeX">m,n \rightarrow \infty, n/m \rightarrow \kappa </tex-math></inline-formula>), the dynamics of the algorithm are given by a deterministic recursion known as the state evolution. For a special class of linearized message-passing algorithms, we show that the state evolution is universal: it continues to hold even when <inline-formula> <tex-math notation="LaTeX">\mathbf {A} </tex-math></inline-formula> is generated by randomly sub-sampling columns of the Hadamard-Walsh matrix, if the signal is drawn from a Gaussian prior. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2022.3182018 |