Generalized q-difference equations for (q, c)-hypergeometric polynomials and some applications

In this paper, our investigation is motivated by the concept of ( q ,  c )-derivative operators introduced by Zhang (Adv Appl Math 121:102081, 2020). Then we seek and find that ( q ,  c )-hypergeometric polynomials involving ( q ,  c )-derivative operators are solutions of certain generalized q -dif...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Ramanujan journal Ročník 60; číslo 4; s. 1033 - 1067
Hlavní autoři: Cao, Jian, Zhou, Hong-Li, Arjika, Sama
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2023
Témata:
ISSN:1382-4090, 1572-9303
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, our investigation is motivated by the concept of ( q ,  c )-derivative operators introduced by Zhang (Adv Appl Math 121:102081, 2020). Then we seek and find that ( q ,  c )-hypergeometric polynomials involving ( q ,  c )-derivative operators are solutions of certain generalized q -difference equations. We introduce two homogeneous ( q ,  c )-difference operators T c ( a , b , d , u , v , x D c , y ) and E c ( a , b , d , u , v , x θ c , y ) , which turn out to be suitable for studying two families of generalized ( q ,  c )-Al-Salam–Carlitz polynomials Φ n ( a , b , d , u , v , c ) ( x , y | q ) and Υ n ( a , b , d , u , v , c ) ( x , y | q ) . Several q -identities such as: generating functions, Andrews–Askey integrals and U ( n + 1 ) type q -binomial formulas for generalized q -polynomials are derived by the method of ( q ,  c )-difference equations.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-022-00634-9