Gaussian Process Approximate Dynamic Programming for Energy-Optimal Supervisory Control of Parallel Hybrid Electric Vehicles

We propose an energy-efficient supervisory control method for the power management of parallel hybrid electric vehicles (HEVs) to improve the fuel economy and reduce exhaust gas emissions. Plug-in HEVs ((P)HEVs) have multiple power sources (e.g., an engine and motor) that should be cooperatively ope...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on vehicular technology Ročník 71; číslo 8; s. 8367 - 8380
Hlavní autori: Bae, Jin Woo, Kim, Kwang-Ki K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9545, 1939-9359
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose an energy-efficient supervisory control method for the power management of parallel hybrid electric vehicles (HEVs) to improve the fuel economy and reduce exhaust gas emissions. Plug-in HEVs ((P)HEVs) have multiple power sources (e.g., an engine and motor) that should be cooperatively operated to meet the required instantaneous traction power for the desired vehicle speed while satisfying their physical limits. Because the efficiencies of the engine and motor vary with different operating speeds and torques, the main issue of energy-efficient power management is to allocate the power demand among the power sources by achieving maximum power conversion efficiencies and satisfy the operating limits. For an efficient power allocation, an optimal control problem is formulated, and a global solution is found through deterministic dynamic programming (DP). Owing to the curse of dimensionality and uncertainties in real driving, DP solutions are not directly applicable in real time. To resolve the limitations of DP, we employ a non-parametric Bayesian function approximation technique using a Gaussian process (GP). The offline DP solutions obtained from a set of real vehicle driving test data were used to learn a state-dependent probabilistic value function through Gaussian process regression. For online implementations, a receding horizon control scheme was applied for the feedback control of the power management. In comparison with the existing charge sustaining strategy and charge depleting and charge sustaining mixed controllers, we recorded fuel efficiency improvements of over 4.8% and 7.3%, respectively, in a mixed urban-suburban route.
AbstractList We propose an energy-efficient supervisory control method for the power management of parallel hybrid electric vehicles (HEVs) to improve the fuel economy and reduce exhaust gas emissions. Plug-in HEVs ((P)HEVs) have multiple power sources (e.g., an engine and motor) that should be cooperatively operated to meet the required instantaneous traction power for the desired vehicle speed while satisfying their physical limits. Because the efficiencies of the engine and motor vary with different operating speeds and torques, the main issue of energy-efficient power management is to allocate the power demand among the power sources by achieving maximum power conversion efficiencies and satisfy the operating limits. For an efficient power allocation, an optimal control problem is formulated, and a global solution is found through deterministic dynamic programming (DP). Owing to the curse of dimensionality and uncertainties in real driving, DP solutions are not directly applicable in real time. To resolve the limitations of DP, we employ a non-parametric Bayesian function approximation technique using a Gaussian process (GP). The offline DP solutions obtained from a set of real vehicle driving test data were used to learn a state-dependent probabilistic value function through Gaussian process regression. For online implementations, a receding horizon control scheme was applied for the feedback control of the power management. In comparison with the existing charge sustaining strategy and charge depleting and charge sustaining mixed controllers, we recorded fuel efficiency improvements of over 4.8% and 7.3%, respectively, in a mixed urban-suburban route.
Author Kim, Kwang-Ki K.
Bae, Jin Woo
Author_xml – sequence: 1
  givenname: Jin Woo
  surname: Bae
  fullname: Bae, Jin Woo
  email: jinwoo.bae@tamu.edu
  organization: Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
– sequence: 2
  givenname: Kwang-Ki K.
  orcidid: 0000-0002-0499-7253
  surname: Kim
  fullname: Kim, Kwang-Ki K.
  email: kwangki.kim@inha.ac.kr
  organization: Department of Electrical and Computer Engineering, Inha University, Incheon, South Korea
BookMark eNp9kM1Lw0AQxRepYFu9C14WPKfuR9Jkj6XWVihYsPYaNttJ3bLNxt1UDPjHu6HFgwdPM8O8N8P7DVCvshUgdEvJiFIiHtab9YgRxkacphmNxxeoTwUXkeCJ6KE-ITSLRBInV2jg_T6McSxoH33P5dF7LSu8claB93hS185-6YNsAD-2lTxo1e12Th4Outrh0jo8q8Dt2uilboLO4NdjDe5Te-taPLVV46zBtsQr6aQxYPCiLZze4pkB1bhwbgPvWhnw1-iylMbDzbkO0dvTbD1dRMuX-fN0sowUE7SJgCupUhb6QnBVFFvORUYoT8YJjzMqhCQiYSnPQDFVylTSlBNVxoqQsiBM8iG6P90NyT6O4Jt8b4-uCi9zlhJOOYtDGaLxSaWc9d5BmSvdyEZ3gaQ2OSV5RzoPpPOOdH4mHYzkj7F2gYtr_7PcnSwaAH7lIs1Ywsb8B3A6jMA
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_TPWRS_2022_3227345
crossref_primary_10_1049_gtd2_70145
crossref_primary_10_1109_TITS_2023_3327380
crossref_primary_10_1109_TTE_2024_3356196
crossref_primary_10_3390_app13105947
crossref_primary_10_1109_TTE_2023_3290024
crossref_primary_10_3390_math11224662
crossref_primary_10_3390_a18060354
crossref_primary_10_1016_j_energy_2025_136292
crossref_primary_10_1016_j_est_2023_108392
crossref_primary_10_7467_KSAE_2023_31_1_019
crossref_primary_10_1109_TVT_2024_3417714
crossref_primary_10_1109_TIV_2023_3346300
crossref_primary_10_1016_j_energy_2023_127588
crossref_primary_10_1016_j_est_2024_112132
Cites_doi 10.4271/2013-01-1470
10.1109/TVT.2021.3075729
10.2139/ssrn.3251551
10.1109/TITS.2021.3099812
10.1090/s0002-9904-1954-09848-8
10.1109/ACC.2008.4587201
10.1002/9781118122631
10.1109/TITS.2014.2319812
10.1109/ACCESS.2020.3036033
10.7551/mitpress/10187.001.0001
10.1109/ACCESS.2020.3027024
10.1109/MCS.2007.338280
10.1016/j.trd.2019.10.024
10.1109/WCICA.2008.4594156
10.1109/MCS.2015.2449688
10.1002/9781118970553
10.1109/TITS.2014.2309674
10.3390/app8020187
10.1109/TVT.2015.2405347
10.1016/j.rser.2015.03.093
10.1016/j.jpowsour.2016.11.106
10.3390/wevj8010274
10.2516/ogst/2014006
10.1016/j.energy.2014.03.020
10.1109/TIV.2020.3011954
10.1109/ACCESS.2021.3098807
10.1016/j.apenergy.2015.12.035
10.1109/MED.2019.8798496
10.1155/2014/160510
10.1002/9781119278924.ch6
10.3390/wevj12020085
10.1109/TVT.2018.2866569
10.1002/SERIES1345
10.3182/20080706-5-KR-1001.00573
10.1109/TVT.2009.2027709
10.1016/j.apenergy.2016.08.085
10.3390/en13133352
10.1109/JPROC.2007.892489
10.1016/j.neucom.2008.12.019
10.1109/IVS.2016.7535426
10.1016/j.ifacol.2019.09.089
10.1016/j.rser.2015.09.036
10.3390/en12142750
10.1109/ACCESS.2019.2941399
10.1007/978-3-642-35913-2
10.1016/j.apenergy.2017.11.072
10.35833/MPCE.2018.000374
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2022.3178146
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 8380
ExternalDocumentID 10_1109_TVT_2022_3178146
9782526
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: NRF-2020R1F1A1076404
  funderid: 10.13039/501100003725
– fundername: Ministry of Education(MOE, Korea)
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-e3cac72291b93cbbd3398013565348199a0952738ec2cfa7a1730cf4c00fb02a3
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000846892800032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 10:18:30 EDT 2025
Tue Nov 18 21:09:36 EST 2025
Sat Nov 29 02:59:02 EST 2025
Wed Aug 27 02:23:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e3cac72291b93cbbd3398013565348199a0952738ec2cfa7a1730cf4c00fb02a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0499-7253
PQID 2703132470
PQPubID 85454
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TVT_2022_3178146
proquest_journals_2703132470
ieee_primary_9782526
crossref_primary_10_1109_TVT_2022_3178146
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
Bertsekas (ref49) 1996
Rasmussen (ref52) 2010; 11
ref19
ref18
Lee (ref3) 2018
Lin (ref51) 2009; 2
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref6
ref5
ref40
Bertsekas (ref37) 2005
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Bae (ref1) 2020
References_xml – ident: ref9
  doi: 10.4271/2013-01-1470
– start-page: 559
  volume-title: Proc. 20th Int. Conf. Control Automat. Syst.
  year: 2020
  ident: ref1
  article-title: Gaussian process approximate dynamic programming for energy management of parallel hybrid electric vehicles
– ident: ref16
  doi: 10.1109/TVT.2021.3075729
– year: 2018
  ident: ref3
  article-title: Charging the future: Challenges and opportunities for electric vehicle adoption
  doi: 10.2139/ssrn.3251551
– ident: ref8
  doi: 10.1109/TITS.2021.3099812
– ident: ref38
  doi: 10.1090/s0002-9904-1954-09848-8
– ident: ref41
  doi: 10.1109/ACC.2008.4587201
– ident: ref48
  doi: 10.1002/9781118122631
– volume: 2
  start-page: 396
  year: 2009
  ident: ref51
  article-title: A survey of approximate dynamic programming
  publication-title: Intell. Hum. Mach. Syst. Cybern.
– ident: ref13
  doi: 10.1109/TITS.2014.2319812
– ident: ref21
  doi: 10.1109/ACCESS.2020.3036033
– ident: ref50
  doi: 10.7551/mitpress/10187.001.0001
– ident: ref25
  doi: 10.1109/ACCESS.2020.3027024
– ident: ref6
  doi: 10.1109/MCS.2007.338280
– ident: ref5
  doi: 10.1016/j.trd.2019.10.024
– ident: ref32
  doi: 10.1109/WCICA.2008.4594156
– volume-title: Neuro-Dynamic Programming
  year: 1996
  ident: ref49
– ident: ref17
  doi: 10.1109/MCS.2015.2449688
– volume: 11
  start-page: 3011
  issue: 100
  year: 2010
  ident: ref52
  article-title: Gaussian processes for machine learning (GPML) toolbox
  publication-title: J. Mac. Learn. Res.
– ident: ref43
  doi: 10.1002/9781118970553
– ident: ref47
  doi: 10.1109/TITS.2014.2309674
– ident: ref35
  doi: 10.3390/app8020187
– ident: ref12
  doi: 10.1109/TVT.2015.2405347
– ident: ref14
  doi: 10.1016/j.rser.2015.03.093
– ident: ref22
  doi: 10.1016/j.jpowsour.2016.11.106
– ident: ref34
  doi: 10.3390/wevj8010274
– ident: ref19
  doi: 10.2516/ogst/2014006
– ident: ref27
  doi: 10.1016/j.energy.2014.03.020
– ident: ref28
  doi: 10.1109/TIV.2020.3011954
– ident: ref7
  doi: 10.1109/ACCESS.2021.3098807
– ident: ref24
  doi: 10.1016/j.apenergy.2015.12.035
– ident: ref26
  doi: 10.1109/MED.2019.8798496
– ident: ref30
  doi: 10.1155/2014/160510
– ident: ref44
  doi: 10.1002/9781119278924.ch6
– ident: ref11
  doi: 10.3390/wevj12020085
– ident: ref20
  doi: 10.1109/TVT.2018.2866569
– ident: ref39
  doi: 10.1002/SERIES1345
– ident: ref40
  doi: 10.3182/20080706-5-KR-1001.00573
– ident: ref46
  doi: 10.1109/TVT.2009.2027709
– ident: ref23
  doi: 10.1016/j.apenergy.2016.08.085
– ident: ref29
  doi: 10.3390/en13133352
– ident: ref2
  doi: 10.1109/JPROC.2007.892489
– ident: ref42
  doi: 10.1016/j.neucom.2008.12.019
– ident: ref18
  doi: 10.1109/IVS.2016.7535426
– ident: ref33
  doi: 10.1016/j.ifacol.2019.09.089
– ident: ref31
  doi: 10.1016/j.rser.2015.09.036
– ident: ref45
  doi: 10.3390/en12142750
– volume-title: Dynamic Programming and Optimal Control
  year: 2005
  ident: ref37
– ident: ref15
  doi: 10.1109/ACCESS.2019.2941399
– ident: ref10
  doi: 10.1007/978-3-642-35913-2
– ident: ref36
  doi: 10.1016/j.apenergy.2017.11.072
– ident: ref4
  doi: 10.35833/MPCE.2018.000374
SSID ssj0014491
Score 2.4480941
Snippet We propose an energy-efficient supervisory control method for the power management of parallel hybrid electric vehicles (HEVs) to improve the fuel economy and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8367
SubjectTerms Approximate dynamic programming
Batteries
Control methods
Dynamic programming
Electric vehicles
Energy conversion efficiency
Energy efficiency
Energy management
Engines
Exhaust gases
Feedback control
Fuel consumption
Fuel economy
Gaussian process
gaussian process regression
Hybrid electric vehicles
Mathematical models
Maximum power
Optimal control
Parallel hybrid electric vehicles
Power management
Power sources
Statistical analysis
Supervisory control
Traffic speed
value function approximation
Vehicle dynamics
Title Gaussian Process Approximate Dynamic Programming for Energy-Optimal Supervisory Control of Parallel Hybrid Electric Vehicles
URI https://ieeexplore.ieee.org/document/9782526
https://www.proquest.com/docview/2703132470
Volume 71
WOSCitedRecordID wos000846892800032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5M8aAHf4vTKTl4Eaxmadc0xzGnO8gUnMNbSdMEBd1kP0TBP9730m4oimBPgSZt6de8fK9533sAR0KKHHm5C-rGiQAZsQx0zHWgwoaL8EhyH-3ev5LdbnJ_r24qcDLXwlhrffCZPaWm38vPh2ZKv8ooG6xoiHgBFqSMC63WfMcgisrqeHWcwEgLZluSXJ31-j10BIVA_5QSPMXfliBfU-WHIfary8Xa_55rHVZLFsmaBewbULGDTVj5kltwCz4u9XRMCklWagFYk9KHvz0iRbXsvChET-coPOsZhzCkr6ztpYDBNRqSZ7zB7fSFbMl4OHpnrSKonQ0du9EjKsHyxDrvJPhibV9LBy_Xtw8-zG4b7i7avVYnKEstBEao-iSwodFGCmxnKjRZloehwrUrRLpHSl2lNFIxUvFYI4zTUtfRMhgXGc5dxoUOd2BxMBzYXWCJzbluNFyeo6uSCJ0h6kK62Clt84SLKpzN3n5qyjzkVA7jKfX-CFcp4pUSXmmJVxWO5yNeihwcf_TdInzm_UpoqlCbAZyWk3ScCukTV0aS7_0-ah-W6dpFvF8NFiejqT2AJfM6eRyPDv339wmFl9la
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54A_XBuzivefBFsC5L27V5FJ1OnFNwDt9KmiYo6Ca7iII_3nPSbiiKYJ8CTdrSrzn5TnO-cwD2RSQy5OXWq2grPGTEkaeqXHnSD22AR5y5aPd2I2o24_t7eTMBh2MtjDHGBZ-ZI2q6vfysq4f0q4yywYpQVCdhOgwCwXO11njPIAiK-ngVnMJIDEabklyWW-0WuoJCoIdKKZ6q3xYhV1Xlhyl268vZ4v-ebAkWCh7JjnPgl2HCdFZg_kt2wVX4OFfDPmkkWaEGYMeUQPztEUmqYad5KXo6RwFazziEIYFlNScG9K7RlDzjDW6HL2RN-t3eOzvJw9pZ17Ib1aMiLE-s_k6SL1Zz1XTwcm3z4ALt1uDurNY6qXtFsQVPC1kZeMbXSkcC26n0dZpmvi9x9fKR8JFWV0qFZIx0PEYLbVWkKmgbtA005zblQvnrMNXpdswGsNhkXIWhzTJ0VmKhUsRdRLZqpTJZzEUJyqO3n-giEzkVxHhKnEfCZYJ4JYRXUuBVgoPxiJc8C8cffVcJn3G_ApoSbI8ATopp2k9E5FJXBhHf_H3UHszWW1eNpHHRvNyCObpPHv23DVOD3tDswIx-HTz2e7vuW_wE987coQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian+Process+Approximate+Dynamic+Programming+for+Energy-Optimal+Supervisory+Control+of+Parallel+Hybrid+Electric+Vehicles&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Bae%2C+Jin+Woo&rft.au=Kim%2C+Kwang-Ki+K.&rft.date=2022-08-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=71&rft.issue=8&rft.spage=8367&rft.epage=8380&rft_id=info:doi/10.1109%2FTVT.2022.3178146&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2022_3178146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon