A Convex Approach to Data-Driven Optimal Control via Perron-Frobenius and Koopman Operators

This article is about the data-driven computation of optimal control for a class of control affine deterministic nonlinear systems. We assume that the control dynamical system model is not available, and the only information about the system dynamics is available in the form of time-series data. We...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control Vol. 67; no. 9; pp. 4778 - 4785
Main Authors: Huang, Bowen, Vaidya, Umesh
Format: Journal Article
Language:English
Published: New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9286, 1558-2523
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article is about the data-driven computation of optimal control for a class of control affine deterministic nonlinear systems. We assume that the control dynamical system model is not available, and the only information about the system dynamics is available in the form of time-series data. We provide a convex formulation for the optimal control problem (OCP) of the nonlinear system. The convex formulation relies on the duality result in the dynamical system's stability theory involving density function and Perron-Frobenius operator. We formulate the OCP as an infinite-dimensional convex optimization program. The finite-dimensional approximation of the optimization problem relies on the recent advances made in the Koopman operator's data-driven computation, which is dual to the Perron-Frobenius operator. Simulation results are presented to demonstrate the application of the developed framework.
AbstractList This article is about the data-driven computation of optimal control for a class of control affine deterministic nonlinear systems. We assume that the control dynamical system model is not available, and the only information about the system dynamics is available in the form of time-series data. We provide a convex formulation for the optimal control problem (OCP) of the nonlinear system. The convex formulation relies on the duality result in the dynamical system’s stability theory involving density function and Perron–Frobenius operator. We formulate the OCP as an infinite-dimensional convex optimization program. The finite-dimensional approximation of the optimization problem relies on the recent advances made in the Koopman operator’s data-driven computation, which is dual to the Perron–Frobenius operator. Simulation results are presented to demonstrate the application of the developed framework.
Author Vaidya, Umesh
Huang, Bowen
Author_xml – sequence: 1
  givenname: Bowen
  orcidid: 0000-0003-2339-1123
  surname: Huang
  fullname: Huang, Bowen
  email: bowen.h@pnnl.gov
  organization: Department of Mechanical Engineering, Clemson University, Clemson, SC, USA
– sequence: 2
  givenname: Umesh
  orcidid: 0000-0002-0483-4921
  surname: Vaidya
  fullname: Vaidya, Umesh
  email: uvaidya@clemson.edu
  organization: Department of Mechanical Engineering, Clemson University, Clemson, SC, USA
BookMark eNp9kD1PwzAQhi1UJFpgR2KxxJziryT2GLUUEJXKUCYGy3Ed4Sq1g-NW8O9x1IqBgel0uve50z0TMHLeGQBuMJpijMT9uppNCSJkSnHBBC_OwBjnOc9ITugIjBHCPBOEFxdg0vfb1BaM4TF4r-DMu4P5glXXBa_0B4wezlVU2TzYg3Fw1UW7U-0Qi8G38GAVfDUheJctgq-Ns_seKreBL953OzUAJqjoQ38FzhvV9ub6VC_B2-JhPXvKlqvH51m1zDQROGaGUtXQWqONQCqvUaEbrUVOTM5KgWusMK-J1jVj3DDORVNjqlXDEkR0STC9BHfHvemBz73po9z6fXDppCQl4kWOOR1S6JjSwfd9MI3sQnosfEuM5KBQJoVyUChPChNS_EG0jSrawYSy7X_g7RG0xpjfO6JMQ0HpD7dvgAw
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3241926
crossref_primary_10_1109_TCSII_2023_3288149
crossref_primary_10_1109_TAC_2024_3414708
crossref_primary_10_1016_j_automatica_2022_110841
crossref_primary_10_1016_j_ifacol_2023_12_092
crossref_primary_10_1109_ACCESS_2025_3554154
crossref_primary_10_1109_LRA_2023_3262200
crossref_primary_10_1109_TAC_2024_3441672
crossref_primary_10_1109_TAC_2023_3288623
Cites_doi 10.1109/CDC.2013.6760712
10.23919/ECC.2001.7076364
10.1016/j.sysconle.2016.11.010
10.1109/TAC.2013.2283095
10.1109/CDC.2018.8619720
10.4064/am-24-1-17-33
10.1137/0331024
10.1109/TAC.2010.2042226
10.1063/1.2709596
10.1109/TAC.2020.2978039
10.23919/ACC.2019.8814903
10.1007/s00332-017-9423-0
10.1007/s00332-015-9258-5
10.1109/TAC.2003.823000
10.1137/070685051
10.1073/pnas.0710743106
10.1109/TAC.2013.2289707
10.23919/ACC50511.2021.9483245
10.23919/ACC.2018.8431409
10.1007/978-3-030-35713-9_12
10.1007/978-1-4612-4286-4
10.1109/CDC.2003.1272774
10.1137/070696209
10.1109/TAC.2007.914955
10.1109/ACC.2007.4282947
10.1109/CDC.2018.8619727
10.1007/s00332-019-09574-z
10.1016/S0167-6911(00)00087-6
10.1016/j.jmaa.2010.02.032
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2022.3164986
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 4785
ExternalDocumentID 10_1109_TAC_2022_3164986
9749893
Genre orig-research
GrantInformation_xml – fundername: NSF CPS
  grantid: 1932458
– fundername: NSF
  grantid: 2031573
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-e33af3bc0d90a5b06cfcc952e54791b1a18b2ccb448e4889fb13caf4af32c7213
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848246200033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Mon Jun 30 10:22:54 EDT 2025
Tue Nov 18 22:23:11 EST 2025
Sat Nov 29 05:41:04 EST 2025
Wed Aug 27 02:29:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-e33af3bc0d90a5b06cfcc952e54791b1a18b2ccb448e4889fb13caf4af32c7213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0483-4921
0000-0003-2339-1123
PQID 2708651831
PQPubID 85475
PageCount 8
ParticipantIDs crossref_primary_10_1109_TAC_2022_3164986
ieee_primary_9749893
proquest_journals_2708651831
crossref_citationtrail_10_1109_TAC_2022_3164986
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref10
ref32
Barbalat (ref33) 1959; 4
ref2
ref1
Theodorou (ref3) 2010; 11
ref16
ref19
ref18
Lasota (ref27) 1994
Korda (ref11) 2016
Kaiser (ref17) 2017; 62
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref22
  doi: 10.1109/CDC.2013.6760712
– ident: ref32
  doi: 10.23919/ECC.2001.7076364
– ident: ref12
  doi: 10.1016/j.sysconle.2016.11.010
– ident: ref10
  doi: 10.1109/TAC.2013.2283095
– ident: ref19
  doi: 10.1109/CDC.2018.8619720
– ident: ref4
  doi: 10.4064/am-24-1-17-33
– ident: ref6
  doi: 10.1137/0331024
– ident: ref24
  doi: 10.1109/TAC.2010.2042226
– volume: 4
  start-page: 267
  issue: 2
  year: 1959
  ident: ref33
  article-title: Systemes dquations diffrentielles doscillations non linaires
  publication-title: Rev. Math. Pures Appl.
– ident: ref1
  doi: 10.1063/1.2709596
– ident: ref21
  doi: 10.1109/TAC.2020.2978039
– ident: ref20
  doi: 10.23919/ACC.2019.8814903
– ident: ref30
  doi: 10.1007/s00332-017-9423-0
– volume: 62
  start-page: 1
  year: 2017
  ident: ref17
  article-title: Data-driven discovery of Koopman eigenfunctions for control
  publication-title: Bull. Amer. Phys. Soc.
– ident: ref29
  doi: 10.1007/s00332-015-9258-5
– volume: 11
  start-page: 3137
  year: 2010
  ident: ref3
  article-title: A generalized path integral control approach to reinforcement learning
  publication-title: J. Mach. Learn. Res.
– ident: ref8
  doi: 10.1109/TAC.2003.823000
– ident: ref13
  doi: 10.1137/070685051
– ident: ref2
  doi: 10.1073/pnas.0710743106
– ident: ref25
  doi: 10.1109/TAC.2013.2289707
– ident: ref16
  doi: 10.23919/ACC50511.2021.9483245
– ident: ref26
  doi: 10.23919/ACC.2018.8431409
– year: 2016
  ident: ref11
  article-title: Moment-sum-of-squares hierarchies for set approximation and optimal control
– ident: ref23
  doi: 10.1007/978-3-030-35713-9_12
– volume-title: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics
  year: 1994
  ident: ref27
  doi: 10.1007/978-1-4612-4286-4
– ident: ref9
  doi: 10.1109/CDC.2003.1272774
– ident: ref5
  doi: 10.1137/070696209
– ident: ref15
  doi: 10.1109/TAC.2007.914955
– ident: ref28
  doi: 10.1109/ACC.2007.4282947
– ident: ref18
  doi: 10.1109/CDC.2018.8619727
– ident: ref31
  doi: 10.1007/s00332-019-09574-z
– ident: ref7
  doi: 10.1016/S0167-6911(00)00087-6
– ident: ref14
  doi: 10.1016/j.jmaa.2010.02.032
SSID ssj0016441
Score 2.5513875
Snippet This article is about the data-driven computation of optimal control for a class of control affine deterministic nonlinear systems. We assume that the control...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4778
SubjectTerms Approximation algorithms
Computational geometry
Control systems
Convex optimization
Convexity
data-driven control
Dynamic stability
Dynamical systems
Heuristic algorithms
linear operator approach
Markov processes
Nonlinear control
Nonlinear systems
Numerical stability
Optimal control
Optimization
Stability criteria
System dynamics
Title A Convex Approach to Data-Driven Optimal Control via Perron-Frobenius and Koopman Operators
URI https://ieeexplore.ieee.org/document/9749893
https://www.proquest.com/docview/2708651831
Volume 67
WOSCitedRecordID wos000848246200033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Me_JridEoOXgTr0rRdmuPYHIIyd5gy8FCSNIWBttJ1wz_fJO2Kogjeesh7Le_XvI-8jwBcxkzEkjDX6Xsud_xQ-Y4IlN5XnMWUKEqIHcfw_EAnk3A-Z9MGXNe9MEopW3ymbsyjzeXHmVyZo7Ke9n2Ztq9NaFJKy16tOmNg7HqpdfWLSFinJDHrzQZDHQgSouPTvmbQ_2aC7J0qPxSxtS7jvf991z7sVl4kGpSwH0BDpYew82W2YBteBmhoKso_0KAaG46KDI14wZ1RblQcetTa4k1zGZbV6mi94Giq8jxLnbFpEkoXqyXiaYzus8z0KGgCZZPyyyN4Gt_OhndOdZOCY3AoHOV5PPGExDHDPBC4LxMpWUBU4FPmCpe7oSBSCt-AFYYsEa4neeJrIiJ1jOgdQyvNUnUCCOMkSJgIqS_NdDQV2nNl7UXFmBGOgw70NsKNZDVm3Nx28RrZcAOzSMMRGTiiCo4OXNUU7-WIjT_Wto3463WV5DvQ3eAXVXtwGRGqw7VAqyz39HeqM9g2vMuKsS60inylzmFLrovFMr-wv9cnzFnL_w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_4BerBrylOp-bgRbAuTdu1OY7NMXFOD1MGHkqSpjDQVtpO_PNN0q4oiuCth7ykvF_yPvI-AnAeUR4JQm2r49jMcgPpWtyT6lwxGvlE-oSYdgxPI388DqZT-rAEl3UtjJTSJJ_JK_1pYvlRKub6qqytbF-q9OsyrHquS-yyWquOGWjNXspdtRQJ6qAkpu1Jt6dcQUKUh9pRU3S-KSHzqsoPUWz0y2D7f3-2A1uVHYm6JfC7sCSTPdj80l2wAc9d1NM55R-oWzUOR0WK-qxgVj_TQg7dK3nxqmbplfnq6H3G0IPMsjSxBrpMKJnNc8SSCN2mqa5SUATShOXzfXgcXE96Q6t6S8HSSBSWdBwWO1zgiGLmcdwRsRDUI9JzfWpzm9kBJ0JwV8MVBDTmtiNY7CoiIpSX6BzASpIm8hAQxrEXUx74rtD90WRgbpaVHRVhShj2mtBeMDcUVaNx_d7FS2gcDkxDBUeo4QgrOJpwUVO8lU02_hjb0Oyvx1Wcb0JrgV9YncI8JL5y2DwltOyj36nOYH04uRuFo5vx7TFs6HXK_LEWrBTZXJ7AmngvZnl2arbaJ5N3z0Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Convex+Approach+to+Data-Driven+Optimal+Control+via+Perron%E2%80%93Frobenius+and+Koopman+Operators&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Huang%2C+Bowen&rft.au=Vaidya%2C+Umesh&rft.date=2022-09-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=67&rft.issue=9&rft.spage=4778&rft.epage=4785&rft_id=info:doi/10.1109%2FTAC.2022.3164986&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2022_3164986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon