Distributed Convex Optimization for Electric Vehicle Aggregators

One of the main challenges for electric vehicle (EV) aggregators is the definition of a control infrastructure that scales to large EV numbers. This paper proposes a new optimization framework for achieving computational scalability based on the alternating directions method of multipliers, which al...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on smart grid Ročník 8; číslo 4; s. 1852 - 1863
Hlavní autori: Rivera, Jose, Goebel, Christoph, Jacobsen, Hans-Arno
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1949-3053, 1949-3061
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:One of the main challenges for electric vehicle (EV) aggregators is the definition of a control infrastructure that scales to large EV numbers. This paper proposes a new optimization framework for achieving computational scalability based on the alternating directions method of multipliers, which allows for distributing the optimization process across several servers/cores. We demonstrate the performance and versatility of our framework by applying it to two relevant aggregator objectives: 1) valley filling; and 2) cost-minimal charging with grid capacity constraints. Our results show that the solving time of our approach scales linearly with the number of controlled EVs and outperforms the centralized optimization benchmark as the fleet size becomes larger.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2015.2509030