InsertionNet - A Scalable Solution for Insertion

Complicated assembly processes can be described as a sequence of two main activities: grasping and insertion. While general grasping solutions are common in industry, insertion is still only applicable to small subsets of problems, mainly ones involving simple shapes in fixed locations and in which...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 6; no. 3; pp. 5509 - 5516
Main Authors: Spector, Oren, Castro, Dotan Di
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Complicated assembly processes can be described as a sequence of two main activities: grasping and insertion. While general grasping solutions are common in industry, insertion is still only applicable to small subsets of problems, mainly ones involving simple shapes in fixed locations and in which the variations are not taken into consideration. Recently, RL approaches with prior knowledge (e.g., LfD or residual policy) have been adopted. However, these approaches might be problematic in contact-rich tasks since interaction might endanger the robot and its equipment. In this letter, we tackled this challenge by formulating the problem as a regression problem. By combining visual and force inputs, we demonstrate that our method can scale to 16 different insertion tasks in less than 10 minutes. The resulting policies are robust to changes in the socket position, orientation or peg color, as well as to small differences in peg shape. Finally, we demonstrate an end-to-end solution for 2 complex assembly tasks with multi-insertion objectives when the assembly board is randomly placed on a table.
AbstractList Complicated assembly processes can be described as a sequence of two main activities: grasping and insertion. While general grasping solutions are common in industry, insertion is still only applicable to small subsets of problems, mainly ones involving simple shapes in fixed locations and in which the variations are not taken into consideration. Recently, RL approaches with prior knowledge (e.g., LfD or residual policy) have been adopted. However, these approaches might be problematic in contact-rich tasks since interaction might endanger the robot and its equipment. In this letter, we tackled this challenge by formulating the problem as a regression problem. By combining visual and force inputs, we demonstrate that our method can scale to 16 different insertion tasks in less than 10 minutes. The resulting policies are robust to changes in the socket position, orientation or peg color, as well as to small differences in peg shape. Finally, we demonstrate an end-to-end solution for 2 complex assembly tasks with multi-insertion objectives when the assembly board is randomly placed on a table.
Author Spector, Oren
Castro, Dotan Di
Author_xml – sequence: 1
  givenname: Oren
  orcidid: 0000-0003-0776-310X
  surname: Spector
  fullname: Spector, Oren
  email: oren.spector@gmail.com
  organization: Bosch Center of Artificial Intelligence, Haifa, Israel
– sequence: 2
  givenname: Dotan Di
  surname: Castro
  fullname: Castro, Dotan Di
  email: dotan.dicastro@gmail.com
  organization: Bosch Center of Artificial Intelligence, Haifa, Israel
BookMark eNp9kM9LwzAUx4NMcM7dBS8Fz515Sdo0xzF0DoaC03NI0xfoqM1M2oP_vS0bQzx4yoN8Pu_H95pMWt8iIbdAFwBUPWzflgtGGSw4lbmScEGmjEuZcpnnk1_1FZnHuKeUQsYkV9mU0E0bMXS1b1-wS9JkmeysaUzZYLLzTT9-JM6H5IzdkEtnmojz0zsjH0-P76vndPu63qyW29QyBV1aOWWAM8FLmYNiFS0yVoA0RjgpUJROWUBnKdoCwRaV4K6QZQmKVsJgVfEZuT_2PQT_1WPs9N73oR1GapZxxocTBAxUfqRs8DEGdNrWnRn37IKpGw1UjwHpISA9BqRPAQ0i_SMeQv1pwvd_yt1RqRHxjCsxQCLnP_CDcNA
CODEN IRALC6
CitedBy_id crossref_primary_10_3390_biomimetics10080512
crossref_primary_10_1109_LRA_2023_3330611
crossref_primary_10_1109_TCSI_2024_3521547
crossref_primary_10_1016_j_jmsy_2023_11_008
crossref_primary_10_3390_machines12120846
crossref_primary_10_3390_machines13070605
crossref_primary_10_1016_j_engappai_2023_107576
crossref_primary_10_1109_LRA_2025_3553676
crossref_primary_10_1109_LRA_2024_3404749
crossref_primary_10_1109_LRA_2022_3176718
crossref_primary_10_1109_TASE_2023_3322566
crossref_primary_10_1108_IR_03_2025_0089
crossref_primary_10_1108_RIA_01_2024_0019
crossref_primary_10_1016_j_rcim_2022_102366
crossref_primary_10_1109_TIE_2023_3269464
crossref_primary_10_3390_act12040144
crossref_primary_10_1109_TCDS_2023_3237734
crossref_primary_10_1017_S026357472510177X
crossref_primary_10_1049_ell2_70245
Cites_doi 10.1177/027836498400300101
10.1109/ROBOT.1994.351117
10.1109/IROS.2018.8594353
10.1109/ICCV.2015.304
10.1109/IROS.2017.8202244
10.1109/ICRA40945.2020.9197125
10.1109/ICRA.2019.8793485
10.1109/CVPR.2019.01291
10.1109/IROS40897.2019.8967896
10.1109/TPAMI.2015.2505283
10.1109/ICRA.2019.8794074
10.1016/j.robot.2008.10.024
10.1109/ICCV.2011.6126544
10.1177/0278364913495721
10.1109/IROS40897.2019.8968201
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2021.3076971
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 5516
ExternalDocumentID 10_1109_LRA_2021_3076971
9420246
Genre orig-research
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-df9a13243b76192d0852817aa4f74e4bf9c1efc0ec8e1c8d43f87bb190d4aedd3
IEDL.DBID RIE
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655244300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Jun 29 16:02:34 EDT 2025
Tue Nov 18 19:41:45 EST 2025
Sat Nov 29 06:03:13 EST 2025
Wed Aug 27 02:51:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-df9a13243b76192d0852817aa4f74e4bf9c1efc0ec8e1c8d43f87bb190d4aedd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0776-310X
PQID 2532301541
PQPubID 4437225
PageCount 8
ParticipantIDs ieee_primary_9420246
proquest_journals_2532301541
crossref_primary_10_1109_LRA_2021_3076971
crossref_citationtrail_10_1109_LRA_2021_3076971
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
davchev (ref16) 2020
ref11
spector (ref5) 2020
ref2
ref1
s (ref10) 0
ref17
ref19
ref18
murphy (ref9) 2012
silver (ref20) 2018
ref24
lee (ref22) 0
ref26
ref25
schoettler (ref15) 2019
xu (ref8) 2019
eigen (ref23) 0
kalashnikov (ref14) 2018
ref21
ref7
ref4
ref3
ref6
sutton (ref13) 2018
References_xml – ident: ref6
  doi: 10.1177/027836498400300101
– ident: ref7
  doi: 10.1109/ROBOT.1994.351117
– year: 2019
  ident: ref8
  article-title: Compare contact model-based control and contact model-free learning: A survey of robotic peg-in-hole assembly strategies
– ident: ref3
  doi: 10.1109/IROS.2018.8594353
– ident: ref24
  doi: 10.1109/ICCV.2015.304
– year: 2020
  ident: ref5
  article-title: Deep reinforcement learning for contact-rich skills using compliant movement primitives
– year: 2018
  ident: ref20
  article-title: Residual policy learning
– year: 2019
  ident: ref15
  article-title: Deep reinforcement learning for industrial insertion tasks with visual inputs and natural rewards
– ident: ref17
  doi: 10.1109/IROS.2017.8202244
– year: 2018
  ident: ref14
  article-title: QT-opt: Scalable deep reinforcement learning for vision-based robotic manipulation
– ident: ref2
  doi: 10.1109/ICRA40945.2020.9197125
– year: 2020
  ident: ref16
  article-title: Residual learning from demonstration: adapting dynamic movement primitives for contact-rich insertion tasks
– ident: ref4
  doi: 10.1109/ICRA.2019.8793485
– ident: ref19
  doi: 10.1109/CVPR.2019.01291
– ident: ref18
  doi: 10.1109/IROS40897.2019.8967896
– ident: ref25
  doi: 10.1109/TPAMI.2015.2505283
– year: 2012
  ident: ref9
  publication-title: Machine Learning A Probabilistic Perspective
– ident: ref1
  doi: 10.1109/ICRA.2019.8794074
– start-page: 1040
  year: 0
  ident: ref10
  article-title: Learning from demonstration
  publication-title: Adv Neural Inf Process Syst
– ident: ref12
  doi: 10.1016/j.robot.2008.10.024
– year: 0
  ident: ref22
  article-title: Network randomization: A simple technique for generalization in deep reinforcement learning
  publication-title: Proc Int Conf Learn Representations
– year: 0
  ident: ref23
  article-title: Depth map prediction from a single image using a multi-scale deep network
  publication-title: Proc Neural Inf Process Syst
– ident: ref26
  doi: 10.1109/ICCV.2011.6126544
– ident: ref11
  doi: 10.1177/0278364913495721
– year: 2018
  ident: ref13
  publication-title: Reinforcement Learning An Introduction
– ident: ref21
  doi: 10.1109/IROS40897.2019.8968201
SSID ssj0001527395
Score 2.4233665
Snippet Complicated assembly processes can be described as a sequence of two main activities: grasping and insertion. While general grasping solutions are common in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5509
SubjectTerms Assembly
Cameras
deep learning methods
Force
Hidden Markov models
Insertion
Machine learning for robot control
Robot vision systems
Robots
Task analysis
Task complexity
Visualization
Title InsertionNet - A Scalable Solution for Insertion
URI https://ieeexplore.ieee.org/document/9420246
https://www.proquest.com/docview/2532301541
Volume 6
WOSCitedRecordID wos000655244300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPvqpYrWUPXgS3zSabbPZYpEWhFvFFbyHZ3YAgqbSpR3-7s0kaFUXwlsNsCN_sZr6Z2ZkBONOBlGgXEuoYJ6WcJYYmaAqoHwcealxzUYSynyZiOg1nM3nbgIu6FsYYU1w-M337WOTy9VytbKhsIDm66jxoQlMIUdZqfcZTbCcx6a8zkY4cTO6G6P-5rI_bOJCCfbM8xSiVH__fwqiMd_73ObuwXZFHMiy1vQcNk-3D1peWgm1wrjObX0e0pyYnlAzJPWrB1keRdQSMIE8ltdgBPI5HD5dXtJqKQJUrWU51KmN0IbmX2AiEq5EzuSETccxTwQ1PUqmYSZVjVGiYCjX30lAkCRp-zWOjtXcIrWyemSMgTpoqU1AyzrjPVewoN_Bj28QOWUcYd2CwRixSVctwO7niJSpcB0dGiHFkMY4qjDtwXq94Ldtl_CHbtpjWchWcHeiulRJV52kZub6HvhLSPXb8-6oT2LTvLi_SdqGVL1bmFDbUW_68XPSgefM-6hUb5gMk3buf
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDb7FaNQcvgmmzyeaxxyKWFmMQrdJb2OwDBEmlTf397m4eKorgLYdZEr7ZzXwzszMDcMEDQpRdyGxHONLGKBN2pkyB7dPAUxrnODSh7Oc4TJJoOiX3LbhqamGEEObymejpR5PL5zO21KGyPsHKVcfBCqz6GLuorNb6jKjoXmLEr3ORDunHDwPlAbqopzZyQEL0zfaYYSo__sDGrAy3__dBO7BV0UdrUOp7F1oi34PNL00F98EZ5zrDrvBORGHZ1sB6VHrQFVJWHQOzFFO1GrEDeBreTK5HdjUXwWYuQYXNJaHKicRepmMQLlesyY1QSCmWIRY4k4QhIZkjWCQQizj2ZBRmmTL9HFPBuXcI7XyWiyOwHCmZMKQMI-xjRh3mBj7VbewU74hoB_o1Yimrmobr2RWvqXEeHJIqjFONcVph3IHLZsVb2TDjD9l9jWkjV8HZgW6tlLQ6UYvU9T3lLSnCh45_X3UO66PJXZzG4-T2BDb0e8prtV1oF_OlOIU19l68LOZnZtt8AKJLvbU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=InsertionNet+-+A+Scalable+Solution+for+Insertion&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Spector%2C+Oren&rft.au=Dotan+Di+Castro&rft.date=2021-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=6&rft.issue=3&rft.spage=5509&rft_id=info:doi/10.1109%2FLRA.2021.3076971&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon