Proper Improvement of Well-Known Numerical Radius Inequalities and Their Applications
New inequalities for the numerical radius of bounded linear operators defined on a complex Hilbert space H are given. In particular, it is established that if T is a bounded linear operator on a Hilbert space H then w 2 ( T ) ≤ min 0 ≤ α ≤ 1 α T ∗ T + ( 1 - α ) T T ∗ , where w ( T ) is the numerical...
Gespeichert in:
| Veröffentlicht in: | Resultate der Mathematik Jg. 76; H. 4 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.12.2021
|
| Schlagworte: | |
| ISSN: | 1422-6383, 1420-9012 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | New inequalities for the numerical radius of bounded linear operators defined on a complex Hilbert space
H
are given. In particular, it is established that if
T
is a bounded linear operator on a Hilbert space
H
then
w
2
(
T
)
≤
min
0
≤
α
≤
1
α
T
∗
T
+
(
1
-
α
)
T
T
∗
,
where
w
(
T
) is the numerical radius of
T
. The inequalities obtained here are non-trivial improvement of the well-known numerical radius inequalities. As an application we estimate bounds for the zeros of a complex monic polynomial. |
|---|---|
| ISSN: | 1422-6383 1420-9012 |
| DOI: | 10.1007/s00025-021-01478-3 |