Proper Improvement of Well-Known Numerical Radius Inequalities and Their Applications

New inequalities for the numerical radius of bounded linear operators defined on a complex Hilbert space H are given. In particular, it is established that if T is a bounded linear operator on a Hilbert space H then w 2 ( T ) ≤ min 0 ≤ α ≤ 1 α T ∗ T + ( 1 - α ) T T ∗ , where w ( T ) is the numerical...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Resultate der Mathematik Ročník 76; číslo 4
Hlavní autoři: Bhunia, Pintu, Paul, Kallol
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2021
Témata:
ISSN:1422-6383, 1420-9012
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:New inequalities for the numerical radius of bounded linear operators defined on a complex Hilbert space H are given. In particular, it is established that if T is a bounded linear operator on a Hilbert space H then w 2 ( T ) ≤ min 0 ≤ α ≤ 1 α T ∗ T + ( 1 - α ) T T ∗ , where w ( T ) is the numerical radius of T . The inequalities obtained here are non-trivial improvement of the well-known numerical radius inequalities. As an application we estimate bounds for the zeros of a complex monic polynomial.
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-021-01478-3