Proper Improvement of Well-Known Numerical Radius Inequalities and Their Applications
New inequalities for the numerical radius of bounded linear operators defined on a complex Hilbert space H are given. In particular, it is established that if T is a bounded linear operator on a Hilbert space H then w 2 ( T ) ≤ min 0 ≤ α ≤ 1 α T ∗ T + ( 1 - α ) T T ∗ , where w ( T ) is the numerical...
Uloženo v:
| Vydáno v: | Resultate der Mathematik Ročník 76; číslo 4 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.12.2021
|
| Témata: | |
| ISSN: | 1422-6383, 1420-9012 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | New inequalities for the numerical radius of bounded linear operators defined on a complex Hilbert space
H
are given. In particular, it is established that if
T
is a bounded linear operator on a Hilbert space
H
then
w
2
(
T
)
≤
min
0
≤
α
≤
1
α
T
∗
T
+
(
1
-
α
)
T
T
∗
,
where
w
(
T
) is the numerical radius of
T
. The inequalities obtained here are non-trivial improvement of the well-known numerical radius inequalities. As an application we estimate bounds for the zeros of a complex monic polynomial. |
|---|---|
| ISSN: | 1422-6383 1420-9012 |
| DOI: | 10.1007/s00025-021-01478-3 |