Multi-Objective Optimization-Based High-Pass Spatial Filtering for SSVEP-Based Brain-Computer Interfaces
Many spatial filtering methods have been proposed to enhance the target identification performance for the steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). The existing approaches tend to learn spatial filter parameters of a certain target using only the training da...
Uloženo v:
| Vydáno v: | IEEE transactions on instrumentation and measurement Ročník 71; s. 1 - 9 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9456, 1557-9662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Many spatial filtering methods have been proposed to enhance the target identification performance for the steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). The existing approaches tend to learn spatial filter parameters of a certain target using only the training data from the same stimulus, and they rarely consider the information from other stimuli or the volume conduction problem during the training process. In this article, we propose a novel multi-objective optimization-based high-pass spatial filtering method to improve the SSVEP detection accuracy and robustness. The filters are derived via maximizing the correlation between the training signal and the individual template from the same target whilst minimizing the correlation between the signal from other targets and the template. The optimization will also be subject to the constraint that the sum of filter elements is zero. The evaluation study on two self-collected SSVEP datasets (including 12 and four frequencies, respectively) shows that the proposed method outperformed the compared methods such as canonical correlation analysis (CCA), multiset CCA (MsetCCA), sum of squared correlations (SSCOR), and task-related component analysis (TRCA). The proposed method was also verified on a public 40-class SSVEP benchmark dataset recorded from 35 subjects. The experimental results have demonstrated the effectiveness of the proposed approach for enhancing the SSVEP detection performance. |
|---|---|
| AbstractList | Many spatial filtering methods have been proposed to enhance the target identification performance for the steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). The existing approaches tend to learn spatial filter parameters of a certain target using only the training data from the same stimulus, and they rarely consider the information from other stimuli or the volume conduction problem during the training process. In this article, we propose a novel multi-objective optimization-based high-pass spatial filtering method to improve the SSVEP detection accuracy and robustness. The filters are derived via maximizing the correlation between the training signal and the individual template from the same target whilst minimizing the correlation between the signal from other targets and the template. The optimization will also be subject to the constraint that the sum of filter elements is zero. The evaluation study on two self-collected SSVEP datasets (including 12 and four frequencies, respectively) shows that the proposed method outperformed the compared methods such as canonical correlation analysis (CCA), multiset CCA (MsetCCA), sum of squared correlations (SSCOR), and task-related component analysis (TRCA). The proposed method was also verified on a public 40-class SSVEP benchmark dataset recorded from 35 subjects. The experimental results have demonstrated the effectiveness of the proposed approach for enhancing the SSVEP detection performance. |
| Author | Zhang, Zhi-Qiang Xie, Sheng Quan Li, Zhenhong Wang, He Zhang, Yue Yu, Zhibin |
| Author_xml | – sequence: 1 givenname: Yue orcidid: 0000-0002-4988-0219 surname: Zhang fullname: Zhang, Yue email: elyzh@leeds.ac.uk organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K – sequence: 2 givenname: Zhenhong orcidid: 0000-0003-2583-5082 surname: Li fullname: Li, Zhenhong email: z.h.li@leeds.ac.uk organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K – sequence: 3 givenname: Sheng Quan orcidid: 0000-0003-2641-2620 surname: Xie fullname: Xie, Sheng Quan email: s.q.xie@leeds.ac.uk organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K – sequence: 4 givenname: He orcidid: 0000-0002-2281-5679 surname: Wang fullname: Wang, He email: h.e.wang@leeds.ac.uk organization: School of Computing, University of Leeds, Leeds, U.K – sequence: 5 givenname: Zhibin orcidid: 0000-0002-5778-3558 surname: Yu fullname: Yu, Zhibin email: zbyu@swjtu.edu.cn organization: School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China – sequence: 6 givenname: Zhi-Qiang orcidid: 0000-0003-0204-3867 surname: Zhang fullname: Zhang, Zhi-Qiang email: z.zhang3@leeds.ac.uk organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K |
| BookMark | eNp9kUFLAzEQhYMo2Kp3wcuC59RJss1mj7ZULbS0UPW6THcTTdnurkkq6K832uLBg5cZGN6bx3zTJ8dN22hCLhkMGIP85nE6H3DgfCBYKvMhHJEeGw4zmkvJj0kPgCmap0N5SvrebwAgk2nWI6_zXR0sXaw3ugz2XSeLLtit_cRg24aO0OsqebAvr3SJ3ierLs6xTu5sHbSzzUtiWpesVs-T5UE7cmgbOm633S4qkmkTq8FS-3NyYrD2-uLQz8jT3eRx_EBni_vp-HZGS56zQKvKcJVJg2uUGbKUGxRVyZRZK1UZhErlIjVotCgxy1AKZmSKsAbQClJZiTNyvd_bufZtp30oNu3ONTGy4FIISDmTKqpgrypd673Tpuic3aL7KBgU3zyLyLP45lkceEaL_GMpbfjBFOLN9X_Gq73Raq1_c3IZv6FAfAEftIVN |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1109_JIOT_2024_3488745 crossref_primary_10_1088_1741_2552_adf467 crossref_primary_10_1109_TNSRE_2024_3419013 crossref_primary_10_1109_TIM_2022_3210944 crossref_primary_10_3389_fnins_2025_1544452 crossref_primary_10_1007_s11042_023_16468_6 crossref_primary_10_1109_TNSRE_2023_3250953 crossref_primary_10_1109_TIM_2023_3284952 crossref_primary_10_1109_TNSRE_2023_3305202 crossref_primary_10_1109_TNSRE_2023_3308778 crossref_primary_10_3389_fnins_2023_1303242 crossref_primary_10_1109_TIM_2023_3347784 crossref_primary_10_1109_TIM_2022_3219497 crossref_primary_10_1108_IJICC_01_2022_0002 crossref_primary_10_1109_ACCESS_2024_3509275 |
| Cites_doi | 10.1109/THMS.2020.2968411 10.1109/TNSRE.2013.2279680 10.1007/s10548-019-00705-z 10.1142/S0129065714500130 10.1088/0967-3334/35/10/2149 10.1152/jn.00560.2019 10.1109/TNSRE.2020.3038209 10.1109/JSEN.2020.3017491 10.1088/1741-2560/12/4/046008 10.1371/journal.pone.0140703 10.1109/TIM.2020.2970846 10.1109/TBME.2017.2694818 10.1109/EMBC.2014.6944263 10.1109/ICASSP.2014.6853959 10.1007/978-3-642-24955-6_35 10.1109/TIM.2019.2914712 10.1109/TBME.2020.2975552 10.1016/j.neuroimage.2018.09.053 10.1142/S0129065720500203 10.1109/TBME.2006.886577 10.1145/3126686.3129334 10.3389/fnhum.2020.606684 10.3390/s19050987 10.1049/PBCE114E 10.1007/s12021-020-09473-9 10.1109/TNSRE.2019.2941349 10.1109/TIM.2021.3051996 10.1109/TIM.2021.3085944 10.1016/j.ijpsycho.2015.04.012 10.1088/1741-2560/10/1/016002 10.1007/s10548-006-0267-4 10.1088/1741-2552/ab2373 10.1109/TIM.2018.2882115 10.1109/TIM.2021.3069026 10.1109/TNSRE.2016.2627556 10.1007/s40747-021-00270-8 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2022.3146950 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 9 |
| ExternalDocumentID | 10_1109_TIM_2022_3146950 9694580 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: China Scholarship Council (CSC) grantid: 201906460007 funderid: 10.13039/501100004543 – fundername: Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/S019219/1 funderid: 10.13039/501100000266 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c291t-ddf2876faba67a142fa3dc18fb88dfa0d8934fafe3ca77a631f64a0b00e8046d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761251000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:07:13 EDT 2025 Sat Nov 29 04:38:18 EST 2025 Tue Nov 18 22:37:10 EST 2025 Wed Aug 27 02:49:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-ddf2876faba67a142fa3dc18fb88dfa0d8934fafe3ca77a631f64a0b00e8046d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2641-2620 0000-0002-4988-0219 0000-0002-2281-5679 0000-0002-5778-3558 0000-0003-0204-3867 0000-0003-2583-5082 |
| PQID | 2633042168 |
| PQPubID | 85462 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1109_TIM_2022_3146950 proquest_journals_2633042168 ieee_primary_9694580 crossref_citationtrail_10_1109_TIM_2022_3146950 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 Mane (ref36) 2017; 12 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref3 doi: 10.1109/THMS.2020.2968411 – ident: ref16 doi: 10.1109/TNSRE.2013.2279680 – ident: ref23 doi: 10.1007/s10548-019-00705-z – ident: ref17 doi: 10.1142/S0129065714500130 – ident: ref22 doi: 10.1088/0967-3334/35/10/2149 – ident: ref27 doi: 10.1152/jn.00560.2019 – ident: ref4 doi: 10.1109/TNSRE.2020.3038209 – ident: ref10 doi: 10.1109/JSEN.2020.3017491 – ident: ref14 doi: 10.1088/1741-2560/12/4/046008 – ident: ref18 doi: 10.1371/journal.pone.0140703 – ident: ref7 doi: 10.1109/TIM.2020.2970846 – ident: ref5 doi: 10.1109/TBME.2017.2694818 – ident: ref35 doi: 10.1109/EMBC.2014.6944263 – ident: ref25 doi: 10.1109/ICASSP.2014.6853959 – ident: ref15 doi: 10.1007/978-3-642-24955-6_35 – ident: ref6 doi: 10.1109/TIM.2019.2914712 – ident: ref12 doi: 10.1109/TBME.2020.2975552 – ident: ref24 doi: 10.1016/j.neuroimage.2018.09.053 – ident: ref20 doi: 10.1142/S0129065720500203 – ident: ref13 doi: 10.1109/TBME.2006.886577 – ident: ref28 doi: 10.1145/3126686.3129334 – ident: ref30 doi: 10.3389/fnhum.2020.606684 – ident: ref21 doi: 10.3390/s19050987 – ident: ref19 doi: 10.1049/PBCE114E – ident: ref2 doi: 10.1007/s12021-020-09473-9 – ident: ref31 doi: 10.1109/TNSRE.2019.2941349 – ident: ref11 doi: 10.1109/TIM.2021.3051996 – volume: 12 start-page: 9774 issue: 20 year: 2017 ident: ref36 article-title: Many-objective optimization: Problems and evolutionary algorithms—A short review publication-title: Int. J. Appl. Eng. Res. – ident: ref9 doi: 10.1109/TIM.2021.3085944 – ident: ref26 doi: 10.1016/j.ijpsycho.2015.04.012 – ident: ref29 doi: 10.1088/1741-2560/10/1/016002 – ident: ref33 doi: 10.1007/s10548-006-0267-4 – ident: ref34 doi: 10.1088/1741-2552/ab2373 – ident: ref8 doi: 10.1109/TIM.2018.2882115 – ident: ref1 doi: 10.1109/TIM.2021.3069026 – ident: ref32 doi: 10.1109/TNSRE.2016.2627556 – ident: ref37 doi: 10.1007/s40747-021-00270-8 |
| SSID | ssj0007647 |
| Score | 2.5296586 |
| Snippet | Many spatial filtering methods have been proposed to enhance the target identification performance for the steady-state visual evoked potential (SSVEP)-based... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Brain–computer interface (BCI) Correlation Correlation analysis Datasets Electrodes Electroencephalography electroencephalography (EEG) Feature extraction high-pass spatial filter Human-computer interface multi-objective optimization Multiple objective analysis Optimization Signal to noise ratio Spatial filtering steady-state visual evoked potential (SSVEP) Target recognition Training Visualization |
| Title | Multi-Objective Optimization-Based High-Pass Spatial Filtering for SSVEP-Based Brain-Computer Interfaces |
| URI | https://ieeexplore.ieee.org/document/9694580 https://www.proquest.com/docview/2633042168 |
| Volume | 71 |
| WOSCitedRecordID | wos000761251000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WRUEPvsX1RQ5eBOM2TZu0R1dcFHR3wQfeStokqOgq-_D3O0m7ZUERvPWQhNAvM5lvMg-A4yCXXEnFaCxsQqNcc5qKnNFQMW5iLoMi94nCN7LXS56e0kEDTutcGGOMDz4zZ-7Tv-Xrj2LqXGXtVKRRnCBBX5BSlrlatdaVIirrYzIUYLQKZk-SQdq-v75FIhiGyE-RDLoM-7kryPdU-aGI_e3SXfvfvtZhtbIiyXkJ-wY0zHATVuZqC27Cko_tLMZb8OyTbGk_fy2VG-mjmniv8i9pB68xTVy4Bx2gIU1cj2I8k6T74t7RcSmCZi25u3u8HFRjO66rBJ21gyDep2hdZNc2PHQv7y-uaNVggRZhyiZUa4uESViVK4F4RaFVXBcssXmSaKsCjcZMZJU1vFBSKsGZFZEKUFJNgrxa8x1oDj-GZhdIhDRPxyZGeXblcnChlHOmOFpouRaBaUF79s-zoqo-7ppgvGWehQRphihlDqWsQqkFJ_WMz7Lyxh9jtxwq9bgKkBYczGDNKtEcZ6HwLhwmkr3fZ-3Dslu79LMcQHMymppDWCy-Ji_j0ZE_dd_iidRd |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7EB-rBt7i6ag5eBOM2TZq2RxUXxX3BruKtpE2Ciq7irv5-J2l3ERTBWw9JWvplJvNN5gFwFOQxV7FiNJI2oSLXnKYyZzRUjJuIx0GR-0ThVtzpJPf3aW8GTqa5MMYYH3xmTt2jv8vXr8WHc5U1UpmKKEGCPhcJEbIyW2uqd2MpygqZDEUY7YLJpWSQNgbXbaSCYYgMFemgy7H_dgj5rio_VLE_X5qr__uyNVip7EhyVgK_DjNmuAHL36oLbsCCj-4sRpvw4NNsaTd_KtUb6aKieKkyMOk5HmSauIAP2kNTmrguxbgrSfPR3aTjUgQNW9Lv3132qrHnrq8EnTSEIN6raF1s1xbcNi8HF1e0arFAizBlY6q1RcokrcqVRMREaBXXBUtsniTaqkCjOSOssoYXKo6V5MxKoQKUVZMgs9Z8G2aHr0OzA0Qg0dORiVCiXcEcXCjlnCmONlquZWBq0Jj886yo6o-7NhjPmechQZohSplDKatQqsHxdMZbWXvjj7GbDpXpuAqQGtQnsGaVcI6yUHonDpPJ7u-zDmHxatBuZa3rzs0eLLn3lF6XOsyO3z_MPswXn-PH0fuB34FfFunXpA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Optimization-Based+High-Pass+Spatial+Filtering+for+SSVEP-Based+Brain%E2%80%93Computer+Interfaces&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Yue&rft.au=Li%2C+Zhenhong&rft.au=Xie%2C+Sheng+Quan&rft.au=Wang%2C+He&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FTIM.2022.3146950&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3146950 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |