Multi-Objective Optimization-Based High-Pass Spatial Filtering for SSVEP-Based Brain-Computer Interfaces

Many spatial filtering methods have been proposed to enhance the target identification performance for the steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). The existing approaches tend to learn spatial filter parameters of a certain target using only the training da...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on instrumentation and measurement Ročník 71; s. 1 - 9
Hlavní autoři: Zhang, Yue, Li, Zhenhong, Xie, Sheng Quan, Wang, He, Yu, Zhibin, Zhang, Zhi-Qiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9456, 1557-9662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Many spatial filtering methods have been proposed to enhance the target identification performance for the steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). The existing approaches tend to learn spatial filter parameters of a certain target using only the training data from the same stimulus, and they rarely consider the information from other stimuli or the volume conduction problem during the training process. In this article, we propose a novel multi-objective optimization-based high-pass spatial filtering method to improve the SSVEP detection accuracy and robustness. The filters are derived via maximizing the correlation between the training signal and the individual template from the same target whilst minimizing the correlation between the signal from other targets and the template. The optimization will also be subject to the constraint that the sum of filter elements is zero. The evaluation study on two self-collected SSVEP datasets (including 12 and four frequencies, respectively) shows that the proposed method outperformed the compared methods such as canonical correlation analysis (CCA), multiset CCA (MsetCCA), sum of squared correlations (SSCOR), and task-related component analysis (TRCA). The proposed method was also verified on a public 40-class SSVEP benchmark dataset recorded from 35 subjects. The experimental results have demonstrated the effectiveness of the proposed approach for enhancing the SSVEP detection performance.
AbstractList Many spatial filtering methods have been proposed to enhance the target identification performance for the steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). The existing approaches tend to learn spatial filter parameters of a certain target using only the training data from the same stimulus, and they rarely consider the information from other stimuli or the volume conduction problem during the training process. In this article, we propose a novel multi-objective optimization-based high-pass spatial filtering method to improve the SSVEP detection accuracy and robustness. The filters are derived via maximizing the correlation between the training signal and the individual template from the same target whilst minimizing the correlation between the signal from other targets and the template. The optimization will also be subject to the constraint that the sum of filter elements is zero. The evaluation study on two self-collected SSVEP datasets (including 12 and four frequencies, respectively) shows that the proposed method outperformed the compared methods such as canonical correlation analysis (CCA), multiset CCA (MsetCCA), sum of squared correlations (SSCOR), and task-related component analysis (TRCA). The proposed method was also verified on a public 40-class SSVEP benchmark dataset recorded from 35 subjects. The experimental results have demonstrated the effectiveness of the proposed approach for enhancing the SSVEP detection performance.
Author Zhang, Zhi-Qiang
Xie, Sheng Quan
Li, Zhenhong
Wang, He
Zhang, Yue
Yu, Zhibin
Author_xml – sequence: 1
  givenname: Yue
  orcidid: 0000-0002-4988-0219
  surname: Zhang
  fullname: Zhang, Yue
  email: elyzh@leeds.ac.uk
  organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K
– sequence: 2
  givenname: Zhenhong
  orcidid: 0000-0003-2583-5082
  surname: Li
  fullname: Li, Zhenhong
  email: z.h.li@leeds.ac.uk
  organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K
– sequence: 3
  givenname: Sheng Quan
  orcidid: 0000-0003-2641-2620
  surname: Xie
  fullname: Xie, Sheng Quan
  email: s.q.xie@leeds.ac.uk
  organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K
– sequence: 4
  givenname: He
  orcidid: 0000-0002-2281-5679
  surname: Wang
  fullname: Wang, He
  email: h.e.wang@leeds.ac.uk
  organization: School of Computing, University of Leeds, Leeds, U.K
– sequence: 5
  givenname: Zhibin
  orcidid: 0000-0002-5778-3558
  surname: Yu
  fullname: Yu, Zhibin
  email: zbyu@swjtu.edu.cn
  organization: School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
– sequence: 6
  givenname: Zhi-Qiang
  orcidid: 0000-0003-0204-3867
  surname: Zhang
  fullname: Zhang, Zhi-Qiang
  email: z.zhang3@leeds.ac.uk
  organization: School of Electronic and Electrical Engineering, Institute of Robotics, Autonomous Systems and Sensing, University of Leeds, Leeds, U.K
BookMark eNp9kUFLAzEQhYMo2Kp3wcuC59RJss1mj7ZULbS0UPW6THcTTdnurkkq6K832uLBg5cZGN6bx3zTJ8dN22hCLhkMGIP85nE6H3DgfCBYKvMhHJEeGw4zmkvJj0kPgCmap0N5SvrebwAgk2nWI6_zXR0sXaw3ugz2XSeLLtit_cRg24aO0OsqebAvr3SJ3ierLs6xTu5sHbSzzUtiWpesVs-T5UE7cmgbOm633S4qkmkTq8FS-3NyYrD2-uLQz8jT3eRx_EBni_vp-HZGS56zQKvKcJVJg2uUGbKUGxRVyZRZK1UZhErlIjVotCgxy1AKZmSKsAbQClJZiTNyvd_bufZtp30oNu3ONTGy4FIISDmTKqpgrypd673Tpuic3aL7KBgU3zyLyLP45lkceEaL_GMpbfjBFOLN9X_Gq73Raq1_c3IZv6FAfAEftIVN
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_JIOT_2024_3488745
crossref_primary_10_1088_1741_2552_adf467
crossref_primary_10_1109_TNSRE_2024_3419013
crossref_primary_10_1109_TIM_2022_3210944
crossref_primary_10_3389_fnins_2025_1544452
crossref_primary_10_1007_s11042_023_16468_6
crossref_primary_10_1109_TNSRE_2023_3250953
crossref_primary_10_1109_TIM_2023_3284952
crossref_primary_10_1109_TNSRE_2023_3305202
crossref_primary_10_1109_TNSRE_2023_3308778
crossref_primary_10_3389_fnins_2023_1303242
crossref_primary_10_1109_TIM_2023_3347784
crossref_primary_10_1109_TIM_2022_3219497
crossref_primary_10_1108_IJICC_01_2022_0002
crossref_primary_10_1109_ACCESS_2024_3509275
Cites_doi 10.1109/THMS.2020.2968411
10.1109/TNSRE.2013.2279680
10.1007/s10548-019-00705-z
10.1142/S0129065714500130
10.1088/0967-3334/35/10/2149
10.1152/jn.00560.2019
10.1109/TNSRE.2020.3038209
10.1109/JSEN.2020.3017491
10.1088/1741-2560/12/4/046008
10.1371/journal.pone.0140703
10.1109/TIM.2020.2970846
10.1109/TBME.2017.2694818
10.1109/EMBC.2014.6944263
10.1109/ICASSP.2014.6853959
10.1007/978-3-642-24955-6_35
10.1109/TIM.2019.2914712
10.1109/TBME.2020.2975552
10.1016/j.neuroimage.2018.09.053
10.1142/S0129065720500203
10.1109/TBME.2006.886577
10.1145/3126686.3129334
10.3389/fnhum.2020.606684
10.3390/s19050987
10.1049/PBCE114E
10.1007/s12021-020-09473-9
10.1109/TNSRE.2019.2941349
10.1109/TIM.2021.3051996
10.1109/TIM.2021.3085944
10.1016/j.ijpsycho.2015.04.012
10.1088/1741-2560/10/1/016002
10.1007/s10548-006-0267-4
10.1088/1741-2552/ab2373
10.1109/TIM.2018.2882115
10.1109/TIM.2021.3069026
10.1109/TNSRE.2016.2627556
10.1007/s40747-021-00270-8
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3146950
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 9
ExternalDocumentID 10_1109_TIM_2022_3146950
9694580
Genre orig-research
GrantInformation_xml – fundername: China Scholarship Council (CSC)
  grantid: 201906460007
  funderid: 10.13039/501100004543
– fundername: Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/S019219/1
  funderid: 10.13039/501100000266
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-ddf2876faba67a142fa3dc18fb88dfa0d8934fafe3ca77a631f64a0b00e8046d3
IEDL.DBID RIE
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761251000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:07:13 EDT 2025
Sat Nov 29 04:38:18 EST 2025
Tue Nov 18 22:37:10 EST 2025
Wed Aug 27 02:49:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-ddf2876faba67a142fa3dc18fb88dfa0d8934fafe3ca77a631f64a0b00e8046d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2641-2620
0000-0002-4988-0219
0000-0002-2281-5679
0000-0002-5778-3558
0000-0003-0204-3867
0000-0003-2583-5082
PQID 2633042168
PQPubID 85462
PageCount 9
ParticipantIDs crossref_primary_10_1109_TIM_2022_3146950
proquest_journals_2633042168
ieee_primary_9694580
crossref_citationtrail_10_1109_TIM_2022_3146950
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
Mane (ref36) 2017; 12
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1109/THMS.2020.2968411
– ident: ref16
  doi: 10.1109/TNSRE.2013.2279680
– ident: ref23
  doi: 10.1007/s10548-019-00705-z
– ident: ref17
  doi: 10.1142/S0129065714500130
– ident: ref22
  doi: 10.1088/0967-3334/35/10/2149
– ident: ref27
  doi: 10.1152/jn.00560.2019
– ident: ref4
  doi: 10.1109/TNSRE.2020.3038209
– ident: ref10
  doi: 10.1109/JSEN.2020.3017491
– ident: ref14
  doi: 10.1088/1741-2560/12/4/046008
– ident: ref18
  doi: 10.1371/journal.pone.0140703
– ident: ref7
  doi: 10.1109/TIM.2020.2970846
– ident: ref5
  doi: 10.1109/TBME.2017.2694818
– ident: ref35
  doi: 10.1109/EMBC.2014.6944263
– ident: ref25
  doi: 10.1109/ICASSP.2014.6853959
– ident: ref15
  doi: 10.1007/978-3-642-24955-6_35
– ident: ref6
  doi: 10.1109/TIM.2019.2914712
– ident: ref12
  doi: 10.1109/TBME.2020.2975552
– ident: ref24
  doi: 10.1016/j.neuroimage.2018.09.053
– ident: ref20
  doi: 10.1142/S0129065720500203
– ident: ref13
  doi: 10.1109/TBME.2006.886577
– ident: ref28
  doi: 10.1145/3126686.3129334
– ident: ref30
  doi: 10.3389/fnhum.2020.606684
– ident: ref21
  doi: 10.3390/s19050987
– ident: ref19
  doi: 10.1049/PBCE114E
– ident: ref2
  doi: 10.1007/s12021-020-09473-9
– ident: ref31
  doi: 10.1109/TNSRE.2019.2941349
– ident: ref11
  doi: 10.1109/TIM.2021.3051996
– volume: 12
  start-page: 9774
  issue: 20
  year: 2017
  ident: ref36
  article-title: Many-objective optimization: Problems and evolutionary algorithms—A short review
  publication-title: Int. J. Appl. Eng. Res.
– ident: ref9
  doi: 10.1109/TIM.2021.3085944
– ident: ref26
  doi: 10.1016/j.ijpsycho.2015.04.012
– ident: ref29
  doi: 10.1088/1741-2560/10/1/016002
– ident: ref33
  doi: 10.1007/s10548-006-0267-4
– ident: ref34
  doi: 10.1088/1741-2552/ab2373
– ident: ref8
  doi: 10.1109/TIM.2018.2882115
– ident: ref1
  doi: 10.1109/TIM.2021.3069026
– ident: ref32
  doi: 10.1109/TNSRE.2016.2627556
– ident: ref37
  doi: 10.1007/s40747-021-00270-8
SSID ssj0007647
Score 2.5296586
Snippet Many spatial filtering methods have been proposed to enhance the target identification performance for the steady-state visual evoked potential (SSVEP)-based...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Brain–computer interface (BCI)
Correlation
Correlation analysis
Datasets
Electrodes
Electroencephalography
electroencephalography (EEG)
Feature extraction
high-pass spatial filter
Human-computer interface
multi-objective optimization
Multiple objective analysis
Optimization
Signal to noise ratio
Spatial filtering
steady-state visual evoked potential (SSVEP)
Target recognition
Training
Visualization
Title Multi-Objective Optimization-Based High-Pass Spatial Filtering for SSVEP-Based Brain-Computer Interfaces
URI https://ieeexplore.ieee.org/document/9694580
https://www.proquest.com/docview/2633042168
Volume 71
WOSCitedRecordID wos000761251000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WRUEPvsX1RQ5eBOM2TZu0R1dcFHR3wQfeStokqOgq-_D3O0m7ZUERvPWQhNAvM5lvMg-A4yCXXEnFaCxsQqNcc5qKnNFQMW5iLoMi94nCN7LXS56e0kEDTutcGGOMDz4zZ-7Tv-Xrj2LqXGXtVKRRnCBBX5BSlrlatdaVIirrYzIUYLQKZk-SQdq-v75FIhiGyE-RDLoM-7kryPdU-aGI_e3SXfvfvtZhtbIiyXkJ-wY0zHATVuZqC27Cko_tLMZb8OyTbGk_fy2VG-mjmniv8i9pB68xTVy4Bx2gIU1cj2I8k6T74t7RcSmCZi25u3u8HFRjO66rBJ21gyDep2hdZNc2PHQv7y-uaNVggRZhyiZUa4uESViVK4F4RaFVXBcssXmSaKsCjcZMZJU1vFBSKsGZFZEKUFJNgrxa8x1oDj-GZhdIhDRPxyZGeXblcnChlHOmOFpouRaBaUF79s-zoqo-7ppgvGWehQRphihlDqWsQqkFJ_WMz7Lyxh9jtxwq9bgKkBYczGDNKtEcZ6HwLhwmkr3fZ-3Dslu79LMcQHMymppDWCy-Ji_j0ZE_dd_iidRd
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7EB-rBt7i6ag5eBOM2TZq2RxUXxX3BruKtpE2Ciq7irv5-J2l3ERTBWw9JWvplJvNN5gFwFOQxV7FiNJI2oSLXnKYyZzRUjJuIx0GR-0ThVtzpJPf3aW8GTqa5MMYYH3xmTt2jv8vXr8WHc5U1UpmKKEGCPhcJEbIyW2uqd2MpygqZDEUY7YLJpWSQNgbXbaSCYYgMFemgy7H_dgj5rio_VLE_X5qr__uyNVip7EhyVgK_DjNmuAHL36oLbsCCj-4sRpvw4NNsaTd_KtUb6aKieKkyMOk5HmSauIAP2kNTmrguxbgrSfPR3aTjUgQNW9Lv3132qrHnrq8EnTSEIN6raF1s1xbcNi8HF1e0arFAizBlY6q1RcokrcqVRMREaBXXBUtsniTaqkCjOSOssoYXKo6V5MxKoQKUVZMgs9Z8G2aHr0OzA0Qg0dORiVCiXcEcXCjlnCmONlquZWBq0Jj886yo6o-7NhjPmechQZohSplDKatQqsHxdMZbWXvjj7GbDpXpuAqQGtQnsGaVcI6yUHonDpPJ7u-zDmHxatBuZa3rzs0eLLn3lF6XOsyO3z_MPswXn-PH0fuB34FfFunXpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Optimization-Based+High-Pass+Spatial+Filtering+for+SSVEP-Based+Brain%E2%80%93Computer+Interfaces&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Yue&rft.au=Li%2C+Zhenhong&rft.au=Xie%2C+Sheng+Quan&rft.au=Wang%2C+He&rft.date=2022&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=71&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FTIM.2022.3146950&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2022_3146950
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon