Phase Retrieval Algorithm via Nonconvex Minimization Using a Smoothing Function
Phase retrieval is an inverse problem which consists in recovering an unknown signal from a set of absolute squared projections. Recently, gradient descent algorithms have been developed to solve this problem. However, their optimization cost functions are non-convex and non-smooth. To address the n...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on signal processing Jg. 66; H. 17; S. 4574 - 4584 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1053-587X, 1941-0476 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Phase retrieval is an inverse problem which consists in recovering an unknown signal from a set of absolute squared projections. Recently, gradient descent algorithms have been developed to solve this problem. However, their optimization cost functions are non-convex and non-smooth. To address the non-smoothness of the cost function, some of these methods use truncation thresholds to calculate a truncated step gradient direction. But, the truncation requires designing parameters to obtain a desired performance in the phase recovery, which drastically modifies the search direction update, increasing the sampling complexity. Therefore, this paper develops the Phase Retrieval Smoothing Conjugate Gradient method (PR-SCG) which uses a smoothing function to retrieve the signal. PR-SCG is based on the smooth-ing projected gradient method which is useful for non-convex optimization problems. PR-SCG uses a nonlinear conjugate gradient of the smoothing function as the search direction to accelerate the convergence. Furthermore, the incremental Stochastic Smoothing Phase Retrieval algorithm (SSPR) is developed. SSPR involves a single equation per iteration which results in a simple, scalable, and fast approach useful when the size of the signal is large. Also, it is shown that SSPR converges linearly to the true signal, up to a global unimodular constant. Additionally, the proposed methods do not require truncation parameters. Simulation results are provided to validate the efficiency of PR-SCG and SSPR compared to existing phase retrieval algorithms. It is shown that PR-SCG and SSPR are able to reduce the number of measurements and iterations to recover the phase, compared with recently developed algorithms. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2018.2855667 |