An improved thermodynamic simulated annealing-based approach for resource-skewness-aware and power-efficient virtual machine consolidation in cloud datacenters

Cloud computing attracted great attention in both industry and research communities for the sake of its ubiquitous, elasticity and economic services. The first class concern of cloud providers is power management for both reducing their total cost of ownership and green computing objectives. To reac...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Soft computing (Berlin, Germany) Ročník 25; číslo 7; s. 5233 - 5260
Hlavní autori: Saeedi, Pedram, Hosseini Shirvani, Mirsaeid
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2021
Predmet:
ISSN:1432-7643, 1433-7479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cloud computing attracted great attention in both industry and research communities for the sake of its ubiquitous, elasticity and economic services. The first class concern of cloud providers is power management for both reducing their total cost of ownership and green computing objectives. To reach the goal, a system framework is presented which has different modules. The main concentration of the paper is on virtual machine (VM) consolidation module which launches users requested VMs on the minimum number of active servers to reduce datacenter total power consumption ( TPC ). In this paper, the VMs consolidation is abstracted to two-dimensional bin-packing problem and also is formulated to an integer linear programming. Since the papers in the literature scarcely are aware of skewness in resources of requested VMs and for discrete nature of search space, this paper presents the resource skewness-aware VMs consolidation algorithm based on improved thermodynamic simulated annealing approach because resource skewness potentially compels the algorithm to activate additional servers. The proposed SA-based algorithm is validated in extensive scenarios with different resource skewness in comparison with two heuristics and two meta-heuristics. The average results reported from different scenarios proves superiority of proposed algorithm in comparison with other approaches in terms of the number of used servers, TPC , and total resource wastage of datacenter.
AbstractList Cloud computing attracted great attention in both industry and research communities for the sake of its ubiquitous, elasticity and economic services. The first class concern of cloud providers is power management for both reducing their total cost of ownership and green computing objectives. To reach the goal, a system framework is presented which has different modules. The main concentration of the paper is on virtual machine (VM) consolidation module which launches users requested VMs on the minimum number of active servers to reduce datacenter total power consumption ( TPC ). In this paper, the VMs consolidation is abstracted to two-dimensional bin-packing problem and also is formulated to an integer linear programming. Since the papers in the literature scarcely are aware of skewness in resources of requested VMs and for discrete nature of search space, this paper presents the resource skewness-aware VMs consolidation algorithm based on improved thermodynamic simulated annealing approach because resource skewness potentially compels the algorithm to activate additional servers. The proposed SA-based algorithm is validated in extensive scenarios with different resource skewness in comparison with two heuristics and two meta-heuristics. The average results reported from different scenarios proves superiority of proposed algorithm in comparison with other approaches in terms of the number of used servers, TPC , and total resource wastage of datacenter.
Author Hosseini Shirvani, Mirsaeid
Saeedi, Pedram
Author_xml – sequence: 1
  givenname: Pedram
  surname: Saeedi
  fullname: Saeedi, Pedram
  organization: Department of Computer Engineering, Sari Branch, Islamic Azad University
– sequence: 2
  givenname: Mirsaeid
  surname: Hosseini Shirvani
  fullname: Hosseini Shirvani, Mirsaeid
  email: mirsaeid_hosseini@iausari.ac.ir
  organization: Department of Computer Engineering, Sari Branch, Islamic Azad University
BookMark eNp9kEtOwzAQhi0EEuVxAVa-gMGPJk6WFeIlVWID62gymYBLYld2SsVpuCpuy4oFC8se6_9GM98ZO_bBE2NXSl4rKe1NkrKQUkidT1FoI9QRm6m5McLObX28f2thy7k5ZWcpraTUyhZmxr4XnrtxHcMndXx6pziG7svD6JAnN24GmPI_eE8wOP8mWki7ep0BwHfeh8gjpbCJSCJ90NZTSgK2EClDHV-HLUVBfe_QkZ_4p4vTBgY-Zth54hh8CoPrYHIhz-E5DmHT8VwD5jzFdMFOehgSXf7e5-z1_u7l9lEsnx-ebhdLgbpWk-jQUI2yAtUiIdi2rLHsy6rUtiAkMH2rpDamU1UHuiZQtppj2xtZS5tT5pxVh74YQ0qR-gbdtB9riuCGRslmJ7o5iG6y6GYvulEZ1X_QdXQjxK__IXOAUg77N4rNKlv0ecX_qB-peJhd
CitedBy_id crossref_primary_10_1007_s10586_023_04204_6
crossref_primary_10_1007_s00521_021_06289_9
crossref_primary_10_1007_s00500_023_09201_w
crossref_primary_10_1016_j_future_2025_108011
crossref_primary_10_1007_s40747_023_01078_4
crossref_primary_10_1016_j_heliyon_2023_e20133
crossref_primary_10_1007_s11227_022_04703_0
crossref_primary_10_1093_comjnl_bxad045
crossref_primary_10_1007_s00521_023_08759_8
crossref_primary_10_1016_j_suscom_2023_100922
crossref_primary_10_1007_s11063_024_11706_w
crossref_primary_10_1007_s10586_024_04539_8
crossref_primary_10_1007_s00500_022_07578_8
crossref_primary_10_1007_s11042_023_16488_2
crossref_primary_10_1016_j_procs_2023_12_131
crossref_primary_10_1007_s10586_022_03795_w
crossref_primary_10_1016_j_jer_2024_03_003
crossref_primary_10_1007_s10586_024_04516_1
crossref_primary_10_1016_j_suscom_2023_100856
crossref_primary_10_7717_peerj_cs_834
crossref_primary_10_1016_j_suscom_2023_100939
crossref_primary_10_1007_s40747_021_00368_z
crossref_primary_10_1007_s12652_021_03429_w
crossref_primary_10_1016_j_compeleceng_2024_109480
crossref_primary_10_1016_j_asoc_2023_110609
Cites_doi 10.1016/j.advengsoft.2016.01.008
10.1016/j.engappai.2020.103501
10.1007/s11277-019-06440-9
10.1016/j.cie.2017.12.001
10.1016/j.future.2018.02.026
10.1080/08839514.2019.1689714
10.1007/s10489-015-0710-x
10.1109/icnn.1995.488968
10.1016/0196-6774(85)90018-5
10.1007/s11063-014-9339-8
10.1109/CUBE.2013.12
10.1002/spe.2528
10.1109/MITP.2018.053891338
10.1002/cpe.1867
10.1016/j.eswa.2014.03.039
10.1126/science.220.4598.671
10.1007/s10489-020-01633-3
10.1007/s10586-011-0177-4
10.1016/j.advengsoft.2013.12.007
10.1007/978-1-4939-2092-1
10.1016/j.suscom.2020.100374
10.1002/j.1538-7305.1948.tb01338.x
10.1016/j.physleta.2003.08.070
10.1535/itj.1201.06
10.1109/TCC.2016.2617374
10.1016/j.jksuci.2018.07.001
10.1016/j.comcom.2014.02.008
10.1016/j.jcss.2013.02.004
10.1016/j.jss.2014.11.014
10.1080/0952813X.2020.1725652
10.1109/INISTA.2018.8466267
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
DBID AAYXX
CITATION
DOI 10.1007/s00500-020-05523-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 5260
ExternalDocumentID 10_1007_s00500_020_05523_1
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c291t-dc3e9c08a1bceca7b69c6f686275ecea3fb10233d18da29ea1784cbf309078623
IEDL.DBID RSV
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608667000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Sat Nov 29 03:36:07 EST 2025
Tue Nov 18 22:00:34 EST 2025
Fri Feb 21 02:49:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Server consolidation
Simulated annealing algorithm
Cloud computing
Resource skewness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-dc3e9c08a1bceca7b69c6f686275ecea3fb10233d18da29ea1784cbf309078623
PageCount 28
ParticipantIDs crossref_citationtrail_10_1007_s00500_020_05523_1
crossref_primary_10_1007_s00500_020_05523_1
springer_journals_10_1007_s00500_020_05523_1
PublicationCentury 2000
PublicationDate 20210400
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 4
  year: 2021
  text: 20210400
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References GaoYGuanHQiZHouYLiuLA multi-objective ant colony system algorithm for virtual machine placement in cloud computingJ Comput Syst Sci201379812301242307921710.1016/j.jcss.2013.02.0041410.68038
ReddyVDSetzBRaoGSVRKGangadharanGAielloMBest practices for sustainable datacenterIT Prof2018205576710.1109/MITP.2018.053891338
AddyaSKTurukAKSahooBSarkarMBiswashSKSimulated annealing based VM placement strategy to maximize the profit for cloud service providersEng Sci Technol Int J20172012491259
Hosseini ShirvaniMTo move or not to move: an iterative four-phase cloud adoption decision model for IT outsourcing based on TCOJ Soft Comput Inf Technol202091717
Jian-pingLLiXMin-rongCHybrid shuffled frog leaping algorithm for energy-efficient dynamic consolidation of virtual machines in cloud data centersExpert Syst Appl201441135804581610.1016/j.eswa.2014.03.039
HabeeraTPMadhu KumarSDSalamSMKrishnanKMOptimizing VM allocation and data placement for data-intensive applications in cloud using ACO metaheuristic algorithmEng Sci Technol Int J2017202017616628
LiHLiWWangHWangJAn optimization of virtual machine selection and placement by using memory content similarity for server consolidation in cloudFut Gener Comput Syst201810.1016/j.future.2018.02.026
BakerBSA new proof for the first-fit decreasing bin-packing algorithmJ Algorithms198561497078085010.1016/0196-6774(85)90018-50563.68042
Hosseini ShirvaniMBabazadeh GorjiAOptimisation of automatic web services composition using genetic algorithmInt J Cloud Comput202092115
BlaglazovABuyyaROptimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centersConcurr Comput Pract Exp201124131397142010.1002/cpe.1867
Hosseini ShirvaniMA hybrid meta-heuristic algorithm for scientific workflow scheduling in heterogeneous distributed computing systemsEng Appl Artif Intell20209012010.1016/j.engappai.2020.103501
LeTDWright, Scheduling workloads in a network of datacenters to reduce electricity cost and carbon footprintSustain Comput Inf Syst201553140
FarzaiSHosseini ShirvaniMRabbaniMMulti-objective communication-aware optimization for virtual machine placement in cloud datacentersSustain Comput Inf Syst20202810037410.1016/j.suscom.2020.100374
FilaniDHeJGaoSRajappaMKumarAShahPNagappanRDynamic data center power management: trends, issues, and solutionsIntel Technol J20081219310.1535/itj.1201.06
Hosseini ShirvaniMRahmaniAMSahafiAA survey study on virtual machine migration and server consolidation techniques in DVFS-enabled cloud datacenter: taxonomy and challengesJ King Saud Univ Comput Inf Sci202032326728610.1016/j.jksuci.2018.07.001
MokaripoorPHosseini ShirvaniMA state of the art survey on DVFS techniques in cloud computing environmentJ Multidiscip Eng Sci Technol201635545559
Adamuthe A, Pandharpatte RM, Thampai GT (2013) Multi-objective virtual machine placement in cloud environment. In: 2013 international conference on cloud and ubiquitous computing and emerging technologies
Hosseini Shirvani M (2018a) A new shuffled genetic-based task scheduling algorithm in heterogeneous distributed systems. J Advan Comput Res 9(4):19–36
Mills M (2013) The cloud begins with coal-an overview of the electricity used by the global digital ecosystem. Technical Report, Digital Power Group, Washington, DC
HosseinzadehSHosseini ShirvaniMOptimizing energy consumption in clouds by using genetic algorithmJ Multidiscip Eng Sci Technol20152614311434
ReddyMARavindranathKVirtual machine placement using JAYA optimization algorithmAppl Artif Intell201910.1080/08839514.2019.1689714
Babazadeh GorjiRHosseini ShirvaniMRamezaniFA new image encryption method using chaotic mapJ Multidiscip Eng Sci Technol20152216
ShannonCEBell Syst Tech J19482737910.1002/j.1538-7305.1948.tb01338.x
BrownRReport to congress on server and data center energy efficiency: public law 109–4312008BerkeleyLawrence Berkeley National Laboratory
Hosseini Shirvani M (2018b) Web service composition in multi-cloud environment: a bi-objective genetic optimization algorithm. In 2018 innovations in intelligent systems and applications (INISTA). IEEE, New York, pp 1–6. https://doi.org/10.1109/INISTA.2018.8466267
SaitSMBalaAEl-MalehAHCuckoo search based resource optimization of datacentersAppl Intell20164448950610.1007/s10489-015-0710-x
TavanaMShahdi-PashakiSTeymourianESantos-ArteagaFJKomakiMA discrete cuckoo optimization algorithm for consolidation in cloud computingComput Ind Eng201710.1016/j.cie.2017.12.001
MoschakisIoannis AKaratzaHelen DMulti-criteria scheduling of Bag-of-Tasks applications on heterogeneous interlinked clouds with simulated annealingJ Syst Softw201410.1016/j.jss.2014.11.014
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol IV, pp 1942–1948. https://doi.org/10.1109/icnn.1995.488968
MirjaliliSeyedaliLewisAndrewThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008
QinYWangHYiSVirtual machine placement based on multi-objective reinforcement learningAppl Intell202010.1007/s10489-020-01633-3
Hosseini ShirvaniMGhojoghiAServer consolidation schemes in cloud computing environment: a reviewEur J Eng Res Sci2018131824
MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007
Van HeddeghemWLambertSLannooBColleDPickavetMDemeesterPTrends in worldwide ICT electricity consumption from 2007 to 2012Comput Commun201450647610.1016/j.comcom.2014.02.008
Hosseini ShirvaniMBi-objective web service composition problem in multi-cloud environment: a bi-objective time-varying particle swarm optimisation algorithmJ Exp Theor Artif Intell202010.1080/0952813X.2020.1725652
TangMPanSA hybrid genetic algorithm for the energy-efficient virtual machine placement problem in data centersNeural Process Lett20154121122110.1007/s11063-014-9339-8
KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322067168070248510.1126/science.220.4598.671
de VicenteJLancharesJHermidaRPlacement by thermodynamic simulated annealingPhys Lett A20033175641542310.1016/j.physleta.2003.08.070
KhanSUZomayaAYHandbook on datacenters2015New YorkSpringer10.1007/978-1-4939-2092-1
Hosseini ShirvaniMRahmaniAMSahafiAAn iterative mathematical decision model for cloud migration: a cost and security risk approachSoftw Pract Exp201848344948510.1002/spe.2528
KliazovichDBouvryPKhanSUDENS: data center energy-efficient network-aware schedulingClust Comput201316657510.1007/s10586-011-0177-4
Amazon (2020). http://www.amazon.com/. 6 May 2020
Amazon EC2 (2020). http://aws.amazon.com/EC2. 6 May 2020
OsamyWEl-sawyAAKhedrAMSATC: a simulated annealing based tree construction and scheduling algorithm for minimizing aggregation time in wireless sensor networksWirel Pers Commun201910892193810.1007/s11277-019-06440-9
FarahnakianFPahikkalaTLiljebergPPlosilaJTrung HieuNTenhunenHEnergy-aware VM consolidation in cloud data centers using utilization prediction modelIEEE Trans Cloud Comput20207252453610.1109/TCC.2016.2617374
MA Reddy (5523_CR38) 2019
S Mirjalili (5523_CR33) 2014; 69
A Blaglazov (5523_CR7) 2011; 24
S Farzai (5523_CR11) 2020; 28
D Filani (5523_CR12) 2008; 12
5523_CR31
W Osamy (5523_CR36) 2019; 108
D Kliazovich (5523_CR28) 2013; 16
P Mokaripoor (5523_CR34) 2016; 3
J de Vicente (5523_CR9) 2003; 317
TD Le (5523_CR29) 2015; 5
Y Qin (5523_CR37) 2020
5523_CR1
F Farahnakian (5523_CR10) 2020; 7
S Kirkpatrick (5523_CR27) 1983; 220
5523_CR4
M Hosseini Shirvani (5523_CR18) 2020
5523_CR3
5523_CR15
M Hosseini Shirvani (5523_CR20) 2018; 1
H Li (5523_CR30) 2018
Ioannis A Moschakis (5523_CR35) 2014
W Van Heddeghem (5523_CR44) 2014; 50
L Jian-ping (5523_CR24) 2014; 41
M Hosseini Shirvani (5523_CR21) 2018; 48
M Tang (5523_CR42) 2015; 41
R Babazadeh Gorji (5523_CR5) 2015; 2
5523_CR500
M Tavana (5523_CR43) 2017
M Hosseini Shirvani (5523_CR16) 2020; 90
VD Reddy (5523_CR39) 2018; 20
SK Addya (5523_CR2) 2017; 20
R Brown (5523_CR8) 2008
Seyedali Mirjalili (5523_CR32) 2016; 95
CE Shannon (5523_CR41) 1948; 27
S Hosseinzadeh (5523_CR23) 2015; 2
SU Khan (5523_CR26) 2015
SM Sait (5523_CR40) 2016; 44
5523_CR25
M Hosseini Shirvani (5523_CR22) 2020; 32
M Hosseini Shirvani (5523_CR17) 2020; 9
M Hosseini Shirvani (5523_CR19) 2020; 9
BS Baker (5523_CR6) 1985; 6
Y Gao (5523_CR13) 2013; 79
TP Habeera (5523_CR14) 2017; 20
References_xml – reference: Hosseini ShirvaniMBabazadeh GorjiAOptimisation of automatic web services composition using genetic algorithmInt J Cloud Comput202092115
– reference: Hosseini ShirvaniMRahmaniAMSahafiAA survey study on virtual machine migration and server consolidation techniques in DVFS-enabled cloud datacenter: taxonomy and challengesJ King Saud Univ Comput Inf Sci202032326728610.1016/j.jksuci.2018.07.001
– reference: BrownRReport to congress on server and data center energy efficiency: public law 109–4312008BerkeleyLawrence Berkeley National Laboratory
– reference: Hosseini ShirvaniMGhojoghiAServer consolidation schemes in cloud computing environment: a reviewEur J Eng Res Sci2018131824
– reference: ReddyVDSetzBRaoGSVRKGangadharanGAielloMBest practices for sustainable datacenterIT Prof2018205576710.1109/MITP.2018.053891338
– reference: Mills M (2013) The cloud begins with coal-an overview of the electricity used by the global digital ecosystem. Technical Report, Digital Power Group, Washington, DC
– reference: FarahnakianFPahikkalaTLiljebergPPlosilaJTrung HieuNTenhunenHEnergy-aware VM consolidation in cloud data centers using utilization prediction modelIEEE Trans Cloud Comput20207252453610.1109/TCC.2016.2617374
– reference: de VicenteJLancharesJHermidaRPlacement by thermodynamic simulated annealingPhys Lett A20033175641542310.1016/j.physleta.2003.08.070
– reference: HosseinzadehSHosseini ShirvaniMOptimizing energy consumption in clouds by using genetic algorithmJ Multidiscip Eng Sci Technol20152614311434
– reference: Hosseini ShirvaniMTo move or not to move: an iterative four-phase cloud adoption decision model for IT outsourcing based on TCOJ Soft Comput Inf Technol202091717
– reference: MirjaliliSeyedaliLewisAndrewThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008
– reference: Hosseini ShirvaniMBi-objective web service composition problem in multi-cloud environment: a bi-objective time-varying particle swarm optimisation algorithmJ Exp Theor Artif Intell202010.1080/0952813X.2020.1725652
– reference: BlaglazovABuyyaROptimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centersConcurr Comput Pract Exp201124131397142010.1002/cpe.1867
– reference: Adamuthe A, Pandharpatte RM, Thampai GT (2013) Multi-objective virtual machine placement in cloud environment. In: 2013 international conference on cloud and ubiquitous computing and emerging technologies
– reference: Van HeddeghemWLambertSLannooBColleDPickavetMDemeesterPTrends in worldwide ICT electricity consumption from 2007 to 2012Comput Commun201450647610.1016/j.comcom.2014.02.008
– reference: LiHLiWWangHWangJAn optimization of virtual machine selection and placement by using memory content similarity for server consolidation in cloudFut Gener Comput Syst201810.1016/j.future.2018.02.026
– reference: FilaniDHeJGaoSRajappaMKumarAShahPNagappanRDynamic data center power management: trends, issues, and solutionsIntel Technol J20081219310.1535/itj.1201.06
– reference: Hosseini Shirvani M (2018b) Web service composition in multi-cloud environment: a bi-objective genetic optimization algorithm. In 2018 innovations in intelligent systems and applications (INISTA). IEEE, New York, pp 1–6. https://doi.org/10.1109/INISTA.2018.8466267
– reference: KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322067168070248510.1126/science.220.4598.671
– reference: KliazovichDBouvryPKhanSUDENS: data center energy-efficient network-aware schedulingClust Comput201316657510.1007/s10586-011-0177-4
– reference: FarzaiSHosseini ShirvaniMRabbaniMMulti-objective communication-aware optimization for virtual machine placement in cloud datacentersSustain Comput Inf Syst20202810037410.1016/j.suscom.2020.100374
– reference: GaoYGuanHQiZHouYLiuLA multi-objective ant colony system algorithm for virtual machine placement in cloud computingJ Comput Syst Sci201379812301242307921710.1016/j.jcss.2013.02.0041410.68038
– reference: Jian-pingLLiXMin-rongCHybrid shuffled frog leaping algorithm for energy-efficient dynamic consolidation of virtual machines in cloud data centersExpert Syst Appl201441135804581610.1016/j.eswa.2014.03.039
– reference: KhanSUZomayaAYHandbook on datacenters2015New YorkSpringer10.1007/978-1-4939-2092-1
– reference: Amazon EC2 (2020). http://aws.amazon.com/EC2. 6 May 2020
– reference: MoschakisIoannis AKaratzaHelen DMulti-criteria scheduling of Bag-of-Tasks applications on heterogeneous interlinked clouds with simulated annealingJ Syst Softw201410.1016/j.jss.2014.11.014
– reference: QinYWangHYiSVirtual machine placement based on multi-objective reinforcement learningAppl Intell202010.1007/s10489-020-01633-3
– reference: Amazon (2020). http://www.amazon.com/. 6 May 2020
– reference: TangMPanSA hybrid genetic algorithm for the energy-efficient virtual machine placement problem in data centersNeural Process Lett20154121122110.1007/s11063-014-9339-8
– reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol IV, pp 1942–1948. https://doi.org/10.1109/icnn.1995.488968
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007
– reference: HabeeraTPMadhu KumarSDSalamSMKrishnanKMOptimizing VM allocation and data placement for data-intensive applications in cloud using ACO metaheuristic algorithmEng Sci Technol Int J2017202017616628
– reference: OsamyWEl-sawyAAKhedrAMSATC: a simulated annealing based tree construction and scheduling algorithm for minimizing aggregation time in wireless sensor networksWirel Pers Commun201910892193810.1007/s11277-019-06440-9
– reference: AddyaSKTurukAKSahooBSarkarMBiswashSKSimulated annealing based VM placement strategy to maximize the profit for cloud service providersEng Sci Technol Int J20172012491259
– reference: Babazadeh GorjiRHosseini ShirvaniMRamezaniFA new image encryption method using chaotic mapJ Multidiscip Eng Sci Technol20152216
– reference: LeTDWright, Scheduling workloads in a network of datacenters to reduce electricity cost and carbon footprintSustain Comput Inf Syst201553140
– reference: MokaripoorPHosseini ShirvaniMA state of the art survey on DVFS techniques in cloud computing environmentJ Multidiscip Eng Sci Technol201635545559
– reference: ReddyMARavindranathKVirtual machine placement using JAYA optimization algorithmAppl Artif Intell201910.1080/08839514.2019.1689714
– reference: TavanaMShahdi-PashakiSTeymourianESantos-ArteagaFJKomakiMA discrete cuckoo optimization algorithm for consolidation in cloud computingComput Ind Eng201710.1016/j.cie.2017.12.001
– reference: BakerBSA new proof for the first-fit decreasing bin-packing algorithmJ Algorithms198561497078085010.1016/0196-6774(85)90018-50563.68042
– reference: Hosseini ShirvaniMA hybrid meta-heuristic algorithm for scientific workflow scheduling in heterogeneous distributed computing systemsEng Appl Artif Intell20209012010.1016/j.engappai.2020.103501
– reference: SaitSMBalaAEl-MalehAHCuckoo search based resource optimization of datacentersAppl Intell20164448950610.1007/s10489-015-0710-x
– reference: ShannonCEBell Syst Tech J19482737910.1002/j.1538-7305.1948.tb01338.x
– reference: Hosseini ShirvaniMRahmaniAMSahafiAAn iterative mathematical decision model for cloud migration: a cost and security risk approachSoftw Pract Exp201848344948510.1002/spe.2528
– reference: Hosseini Shirvani M (2018a) A new shuffled genetic-based task scheduling algorithm in heterogeneous distributed systems. J Advan Comput Res 9(4):19–36
– volume: 95
  start-page: 51
  year: 2016
  ident: 5523_CR32
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 3
  start-page: 545
  issue: 5
  year: 2016
  ident: 5523_CR34
  publication-title: J Multidiscip Eng Sci Technol
– volume: 90
  start-page: 1
  year: 2020
  ident: 5523_CR16
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103501
– volume: 108
  start-page: 921
  year: 2019
  ident: 5523_CR36
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-019-06440-9
– volume: 2
  start-page: 1431
  issue: 6
  year: 2015
  ident: 5523_CR23
  publication-title: J Multidiscip Eng Sci Technol
– year: 2017
  ident: 5523_CR43
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2017.12.001
– year: 2018
  ident: 5523_CR30
  publication-title: Fut Gener Comput Syst
  doi: 10.1016/j.future.2018.02.026
– year: 2019
  ident: 5523_CR38
  publication-title: Appl Artif Intell
  doi: 10.1080/08839514.2019.1689714
– volume: 44
  start-page: 489
  year: 2016
  ident: 5523_CR40
  publication-title: Appl Intell
  doi: 10.1007/s10489-015-0710-x
– ident: 5523_CR25
  doi: 10.1109/icnn.1995.488968
– volume: 6
  start-page: 49
  issue: 1
  year: 1985
  ident: 5523_CR6
  publication-title: J Algorithms
  doi: 10.1016/0196-6774(85)90018-5
– volume: 41
  start-page: 211
  year: 2015
  ident: 5523_CR42
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-014-9339-8
– ident: 5523_CR1
  doi: 10.1109/CUBE.2013.12
– volume: 48
  start-page: 449
  issue: 3
  year: 2018
  ident: 5523_CR21
  publication-title: Softw Pract Exp
  doi: 10.1002/spe.2528
– volume: 20
  start-page: 57
  issue: 5
  year: 2018
  ident: 5523_CR39
  publication-title: IT Prof
  doi: 10.1109/MITP.2018.053891338
– ident: 5523_CR3
– volume: 24
  start-page: 1397
  issue: 13
  year: 2011
  ident: 5523_CR7
  publication-title: Concurr Comput Pract Exp
  doi: 10.1002/cpe.1867
– volume: 41
  start-page: 5804
  issue: 13
  year: 2014
  ident: 5523_CR24
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.03.039
– volume: 220
  start-page: 671
  year: 1983
  ident: 5523_CR27
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– year: 2020
  ident: 5523_CR37
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01633-3
– volume: 16
  start-page: 65
  year: 2013
  ident: 5523_CR28
  publication-title: Clust Comput
  doi: 10.1007/s10586-011-0177-4
– volume: 69
  start-page: 46
  year: 2014
  ident: 5523_CR33
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume-title: Handbook on datacenters
  year: 2015
  ident: 5523_CR26
  doi: 10.1007/978-1-4939-2092-1
– volume: 5
  start-page: 31
  year: 2015
  ident: 5523_CR29
  publication-title: Sustain Comput Inf Syst
– volume: 28
  start-page: 100374
  year: 2020
  ident: 5523_CR11
  publication-title: Sustain Comput Inf Syst
  doi: 10.1016/j.suscom.2020.100374
– volume: 9
  start-page: 7
  issue: 1
  year: 2020
  ident: 5523_CR17
  publication-title: J Soft Comput Inf Technol
– volume: 27
  start-page: 379
  year: 1948
  ident: 5523_CR41
  publication-title: Bell Syst Tech J
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 317
  start-page: 415
  issue: 56
  year: 2003
  ident: 5523_CR9
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2003.08.070
– volume: 1
  start-page: 18
  issue: 3
  year: 2018
  ident: 5523_CR20
  publication-title: Eur J Eng Res Sci
– volume-title: Report to congress on server and data center energy efficiency: public law 109–431
  year: 2008
  ident: 5523_CR8
– ident: 5523_CR31
– volume: 20
  start-page: 1249
  year: 2017
  ident: 5523_CR2
  publication-title: Eng Sci Technol Int J
– volume: 12
  start-page: 93
  issue: 1
  year: 2008
  ident: 5523_CR12
  publication-title: Intel Technol J
  doi: 10.1535/itj.1201.06
– volume: 20
  start-page: 616
  issue: 2017
  year: 2017
  ident: 5523_CR14
  publication-title: Eng Sci Technol Int J
– volume: 7
  start-page: 524
  issue: 2
  year: 2020
  ident: 5523_CR10
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2016.2617374
– volume: 32
  start-page: 267
  issue: 3
  year: 2020
  ident: 5523_CR22
  publication-title: J King Saud Univ Comput Inf Sci
  doi: 10.1016/j.jksuci.2018.07.001
– volume: 50
  start-page: 64
  year: 2014
  ident: 5523_CR44
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2014.02.008
– volume: 2
  start-page: 1
  issue: 2
  year: 2015
  ident: 5523_CR5
  publication-title: J Multidiscip Eng Sci Technol
– volume: 79
  start-page: 1230
  issue: 8
  year: 2013
  ident: 5523_CR13
  publication-title: J Comput Syst Sci
  doi: 10.1016/j.jcss.2013.02.004
– ident: 5523_CR500
– year: 2014
  ident: 5523_CR35
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2014.11.014
– ident: 5523_CR4
– volume: 9
  start-page: 1
  issue: 2
  year: 2020
  ident: 5523_CR19
  publication-title: Int J Cloud Comput
– year: 2020
  ident: 5523_CR18
  publication-title: J Exp Theor Artif Intell
  doi: 10.1080/0952813X.2020.1725652
– ident: 5523_CR15
  doi: 10.1109/INISTA.2018.8466267
SSID ssj0021753
Score 2.400649
Snippet Cloud computing attracted great attention in both industry and research communities for the sake of its ubiquitous, elasticity and economic services. The first...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 5233
SubjectTerms Artificial Intelligence
Computational Intelligence
Control
Engineering
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Robotics
Title An improved thermodynamic simulated annealing-based approach for resource-skewness-aware and power-efficient virtual machine consolidation in cloud datacenters
URI https://link.springer.com/article/10.1007/s00500-020-05523-1
Volume 25
WOSCitedRecordID wos000608667000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6-DnrwLa4vcvCmgb62SY8iiqCI-MJbSZNZKLpdadfdn-NfdSabLi6IoMeWSSlMkm8mmfk-xo5VL5MQmUSkGkAkaapFEciC1lUQW4CuMY7E9Ube3qqXl-zON4U1bbV7eyXpduppsxtRlQSC0p2gi-mTwJxnEeFOkWDD_cPzNM3y3JMYCGDsiIDrW2V-_sYsHM3ehTqIuVz738-ts1UfUvKzyRzYYHNQbbK1Vq6B-9W7yVa-cQ9usc-zipfuRAEspyiwP7ATdXrelH0S9cL3GndhTQ3rgtAOnz0DOcdQl9f-5F80rzCmHVPosa4BB1n-TuJrAhw_BcIaH5U1NarwvqvdBI5ZOE76ciLoxMuKm7fBh-VUr0rlohiTbrOny4vH8yvh1RqEibJwKKyJITOB0mFhwGhZpJlJe9SAIrtgQMe9gmgiYhsqq6MMdChVYopeHGB-jlbxDluoBhXsMq6KNJEatMwynUSJUYiogbJorhKIVdBhYeu03Hgqc1LUeMunJMzOHzn6I3f-yMMOO5mOeZ8Qefxqfdr6OfeLuvnFfO9v5vtsOaLSGFcAdMAWhvUHHLIlMxqWTX3E5q-lOHJz-gtKS_Lp
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6ignrwLb7NwZsG-to2PS6iKK6L-MJbSZNZKO52pV3dn-NfdSabLgoi6LFlUgqT5JtJZr6PsWPZSxMIdCRiBSCiOFYi95Kc1pUXGoCW1pbEtZN0u_L5Ob11TWF1U-3eXEnanXra7EZUJZ6gdMdrYfokMOeZixCxiDH_7v5pmmY57kkMBDB2RMB1rTI_f-M7HH2_C7UQc7Hyv59bZcsupOTtyRxYYzNQrrOVRq6Bu9W7zpa-cA9usI92yQt7ogCGUxQ4GJqJOj2viwGJeuF7hbuwooZ1QWiHz46BnGOoyyt38i_qFxjTjinUWFWAgwx_JfE1AZafAmGNvxcVNarwga3dBI5ZOE76YiLoxIuS6_7wzXCqV6VyUYxJN9njxfnD2aVwag1CB6k_EkaHkGpPKj_XoFWSx6mOe9SAkrRAgwp7OdFEhMaXRgUpKD-Rkc57oYf5OVqFW2y2HJawzbjM4yhRoJI0VVEQaYmI6kmD5jKCUHo7zG-clmlHZU6KGv1sSsJs_ZGhPzLrj8zfYSfTMa8TIo9frU8bP2duUde_mO_-zfyILVw-3HSyzlX3eo8tBlQmY4uB9tnsqHqDAzav30dFXR3amf0J_eH0_Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iInrwLb7NwZsG-9o2PS7qoiiL4ANvJU2mUHS7S3d1f45_1Zk0uyiIIB5bJqFhMpmZZr5vGDuWRZpAoCMRKwARxbESuZfkZFdeaABaWlsS19uk25XPz-ndFxS_rXafXEk2mAZiaapGZwNTnE2Bb0Rb4glKfbwWplIC85-5iArpKV-_f5qmXI6HEoMCjCPR-TrYzM9zfHdN3-9FrbvprPz_Q1fZsgs1ebvZG2tsBqp1tjJp48CdVa-zpS-chBvso13x0v5pAMMpOuz1TdO1ng_LHjX7wvcKT2dFQHZBXhCfHTM5xxCY1-5GQAxfYEwnqVBjVQMOMnxATdkEWN4KXAV_L2sCsPCerekEjqtDYyibRk-8rLh-7b8ZTnWsVEaKseome-xcPpxfCdfFQegg9UfC6BBS7Unl5xq0SvI41XFBwJSkBRpUWOREHxEaXxoVpKD8REY6L0IP83aUCrfYbNWvYJtxmcdRokAlaaqiINISPa0nDYrLCELp7TB_osBMO4pz6rTxmk3Jma0-MtRHZvWR-TvsZDpm0BB8_Cp9OtF55ox9-Iv47t_Ej9jC3UUnu73u3uyxxYCqZ2yN0D6bHdVvcMDm9fuoHNaHdpN_AjnD_eE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+thermodynamic+simulated+annealing-based+approach+for+resource-skewness-aware+and+power-efficient+virtual+machine+consolidation+in+cloud+datacenters&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Saeedi%2C+Pedram&rft.au=Hosseini+Shirvani%2C+Mirsaeid&rft.date=2021-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=25&rft.issue=7&rft.spage=5233&rft.epage=5260&rft_id=info:doi/10.1007%2Fs00500-020-05523-1&rft.externalDocID=10_1007_s00500_020_05523_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon