CAM-FoC: A High Accuracy Lightweight Deep Neural Network for Grip Force Measurement of Elongated Surgical Instrument
Grip force measurement enables better control performance for robot-assisted minimally invasive surgery (RMIS). A deep-learning-based method is proposed to measure the instrument grip force without mounting additional sensors in this article. First, the training trajectory and input data frame are s...
Uložené v:
| Vydané v: | IEEE transactions on instrumentation and measurement Ročník 70; s. 1 - 12 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9456, 1557-9662 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Grip force measurement enables better control performance for robot-assisted minimally invasive surgery (RMIS). A deep-learning-based method is proposed to measure the instrument grip force without mounting additional sensors in this article. First, the training trajectory and input data frame are studied. Seven data are derived from the original sensor data, and a binary butterfly optimization algorithm with opposite-based learning (bBOA-OBL) is conducted to form the suitable input data frame. Based on the data frame, a novel convolutional network with an attention mechanism and feedforward of current (CAM-FoC) is proposed to calculate the grip force. The results of the ablation study tell that the master-slave trajectory has the highest accuracy, the optimized input data frame can reduce the error by 17%, and each component of CAM-FoC can enhance the measurement accuracy. Experiments and comparisons are also carried out. The root mean squared error (RMSE) in the experiment is only 0.1233 N and is lower than four other popular methods. In addition, the average computation time is around 2 ms on different platforms. The method manifests higher measurement accuracy than the state-of-the-art and is of acceptable computational complexity. The technology would potentially achieve grip force feedback in clinical usage, which can significantly improve surgery performance. The method could also be used by other robots composed of the cable-pulley mechanism to acquire external forces. |
|---|---|
| AbstractList | Grip force measurement enables better control performance for robot-assisted minimally invasive surgery (RMIS). A deep-learning-based method is proposed to measure the instrument grip force without mounting additional sensors in this article. First, the training trajectory and input data frame are studied. Seven data are derived from the original sensor data, and a binary butterfly optimization algorithm with opposite-based learning (bBOA-OBL) is conducted to form the suitable input data frame. Based on the data frame, a novel convolutional network with an attention mechanism and feedforward of current (CAM-FoC) is proposed to calculate the grip force. The results of the ablation study tell that the master-slave trajectory has the highest accuracy, the optimized input data frame can reduce the error by 17%, and each component of CAM-FoC can enhance the measurement accuracy. Experiments and comparisons are also carried out. The root mean squared error (RMSE) in the experiment is only 0.1233 N and is lower than four other popular methods. In addition, the average computation time is around 2 ms on different platforms. The method manifests higher measurement accuracy than the state-of-the-art and is of acceptable computational complexity. The technology would potentially achieve grip force feedback in clinical usage, which can significantly improve surgery performance. The method could also be used by other robots composed of the cable-pulley mechanism to acquire external forces. |
| Author | Guo, Yongchen Pan, Bo Fu, Yili Meng, Max Q.-H. |
| Author_xml | – sequence: 1 givenname: Yongchen orcidid: 0000-0001-8702-0239 surname: Guo fullname: Guo, Yongchen organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China – sequence: 2 givenname: Bo orcidid: 0000-0001-8954-399X surname: Pan fullname: Pan, Bo email: panbo4034@163.com organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China – sequence: 3 givenname: Yili orcidid: 0000-0001-7720-654X surname: Fu fullname: Fu, Yili organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China – sequence: 4 givenname: Max Q.-H. orcidid: 0000-0002-5255-5898 surname: Meng fullname: Meng, Max Q.-H. organization: Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China |
| BookMark | eNp9kE1PwkAQhjcGE0G9m3jZxHNx9qO7XW8EQUlAD-q5WdopFqGL220I_942EA8evMxkMu8zkzwD0qtchYTcMBgyBub-fbYYcuBsKEBJKeQZ6bM41pFRivdIH4AlkZGxuiCDul4DgFZS90kYjxbR1I0f6Ig-l6tPOsqyxtvsQOftFPbYVfqIuKMv2C42bQt7579o4Tx98uWOTp3PkC7Q1o3HLVaBuoJONq5a2YA5fWv8qsxacFbVwTdd4IqcF3ZT4_WpX5KP6eR9_BzNX59m49E8yrhhIcqXCFZzsElhEmQsXhbcKm6MAKGYBCNyYYGB5lxJlWueg2Z5wbhUSc7QiEtyd7y78-67wTqka9f4qn2Z8hhiBUksu5Q6pjLv6tpjkWZlsKF0VfC23KQM0s5w2hpOO8PpyXALwh9w58ut9Yf_kNsjUiLib9wIzTRPxA8x8oaM |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1109_JSEN_2022_3224042 crossref_primary_10_1109_LRA_2023_3252364 crossref_primary_10_1109_TIM_2021_3124039 crossref_primary_10_3389_fpls_2022_1008819 crossref_primary_10_1109_TIM_2022_3162596 crossref_primary_10_1109_TIM_2025_3545167 crossref_primary_10_1145_3617370 crossref_primary_10_1109_TIM_2023_3288245 crossref_primary_10_1109_TIM_2023_3298396 crossref_primary_10_1109_TIM_2025_3561379 crossref_primary_10_1109_TIM_2022_3204086 crossref_primary_10_1109_TIM_2022_3149109 |
| Cites_doi | 10.1007/978-3-319-32552-1 10.1109/TRO.2012.2194889 10.1109/LRA.2017.2666420 10.1109/IROS.2014.6942726 10.3390/s19235291 10.1016/j.eswa.2018.08.051 10.1109/ROBIO49542.2019.8961473 10.1109/CIMCA.2005.1631345 10.1007/978-1-4419-1126-1 10.1109/MIM.2020.9200875 10.1145/3063592 10.1109/MIM.2014.6825388 10.1109/FUZZ-IEEE.2016.7737812 10.1109/JSEN.2008.917481 10.1109/TIM.2019.2909603 10.1016/j.jtcvs.2007.08.043 10.1109/CVPR.2016.90 10.1109/ROBOT.2009.5152705 10.1109/LRA.2017.2676347 10.1109/ICRA.2016.7487605 10.1109/TRO.2015.2473515 10.1016/j.bspc.2019.01.011 10.12783/dtcse/aita2017/16022 10.1007/978-3-030-01234-2_1 10.1142/S0219843615500139 10.1002/rcs.1532 10.1109/ICSMC.1997.637339 10.1007/s12555-014-0100-x 10.3390/s18072067 10.1007/s11548-018-1866-8 10.1109/TIM.2018.2834085 10.1109/TCDS.2020.2981876 10.3390/s17112455 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2021.3064434 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TIM_2021_3064434 9371728 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Jiangsu Province Science and Technology Pillar Program grantid: CE20190106 funderid: 10.13039/501100004610 – fundername: Stake Key Laboratory of Robotics and Systems grantid: SKLRS202009B – fundername: Jiangsu Province Key Research and Development Plan grantid: BE2019038 – fundername: National Natural Science Foundation of China grantid: 61803341 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c291t-dbe0a720a8f98e115bf2a6299303614093d3a010722646d72d071df12468d1e93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633244500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:18:06 EDT 2025 Sat Nov 29 04:38:10 EST 2025 Tue Nov 18 22:21:56 EST 2025 Wed Aug 27 02:44:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-dbe0a720a8f98e115bf2a6299303614093d3a010722646d72d071df12468d1e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8702-0239 0000-0002-5255-5898 0000-0001-8954-399X 0000-0001-7720-654X |
| PQID | 2505608549 |
| PQPubID | 85462 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIM_2021_3064434 ieee_primary_9371728 proquest_journals_2505608549 crossref_primary_10_1109_TIM_2021_3064434 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref37 ref15 ref14 ref31 ref33 ref11 ref32 ref10 ref2 lin (ref30) 2013 ref1 ref17 ref16 simonyan (ref36) 2014 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 ref9 krizhevsky (ref35) 2012 ref4 ref3 ref6 ref5 abadi (ref27) 2015 |
| References_xml | – ident: ref1 doi: 10.1007/978-3-319-32552-1 – ident: ref15 doi: 10.1109/TRO.2012.2194889 – ident: ref8 doi: 10.1109/LRA.2017.2666420 – ident: ref26 doi: 10.1109/IROS.2014.6942726 – ident: ref25 doi: 10.3390/s19235291 – ident: ref10 doi: 10.1016/j.eswa.2018.08.051 – ident: ref7 doi: 10.1109/ROBIO49542.2019.8961473 – ident: ref11 doi: 10.1109/CIMCA.2005.1631345 – ident: ref4 doi: 10.1007/978-1-4419-1126-1 – ident: ref5 doi: 10.1109/MIM.2020.9200875 – ident: ref33 doi: 10.1145/3063592 – ident: ref31 doi: 10.1109/MIM.2014.6825388 – ident: ref18 doi: 10.1109/FUZZ-IEEE.2016.7737812 – ident: ref12 doi: 10.1109/JSEN.2008.917481 – ident: ref32 doi: 10.1109/TIM.2019.2909603 – ident: ref3 doi: 10.1016/j.jtcvs.2007.08.043 – ident: ref37 doi: 10.1109/CVPR.2016.90 – ident: ref2 doi: 10.1109/ROBOT.2009.5152705 – ident: ref22 doi: 10.1109/LRA.2017.2676347 – ident: ref21 doi: 10.1109/ICRA.2016.7487605 – ident: ref14 doi: 10.1109/TRO.2015.2473515 – ident: ref20 doi: 10.1016/j.bspc.2019.01.011 – ident: ref13 doi: 10.12783/dtcse/aita2017/16022 – ident: ref29 doi: 10.1007/978-3-030-01234-2_1 – ident: ref24 doi: 10.1142/S0219843615500139 – start-page: 1097 year: 2012 ident: ref35 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref16 doi: 10.1002/rcs.1532 – ident: ref28 doi: 10.1109/ICSMC.1997.637339 – ident: ref23 doi: 10.1007/s12555-014-0100-x – ident: ref17 doi: 10.3390/s18072067 – ident: ref9 doi: 10.1007/s11548-018-1866-8 – ident: ref34 doi: 10.1109/TIM.2018.2834085 – ident: ref6 doi: 10.1109/TCDS.2020.2981876 – ident: ref19 doi: 10.3390/s17112455 – year: 2015 ident: ref27 publication-title: TensorFlow Large-Scale Machine Learning on Heterogeneous Systems – year: 2014 ident: ref36 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 – year: 2013 ident: ref30 article-title: Network in network publication-title: arXiv 1312 4400 |
| SSID | ssj0007647 |
| Score | 2.4891307 |
| Snippet | Grip force measurement enables better control performance for robot-assisted minimally invasive surgery (RMIS). A deep-learning-based method is proposed to... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Ablation Accuracy Algorithms Artificial neural networks Attention mechanism Control equipment convolutional neural network (CNN) Error reduction Force Force measurement Force sensors Grip force grip force measurement Instruments Machine learning Optimization Robot control robot-assisted minimally invasive surgery (RMIS) Robotic surgery Root-mean-square errors Sensors Surgery Surgical instruments Trajectory |
| Title | CAM-FoC: A High Accuracy Lightweight Deep Neural Network for Grip Force Measurement of Elongated Surgical Instrument |
| URI | https://ieeexplore.ieee.org/document/9371728 https://www.proquest.com/docview/2505608549 |
| Volume | 70 |
| WOSCitedRecordID | wos000633244500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qUdCDb7G-yMGL4No2Gzcbb6VaFWwRfOBtyWayIJSu9KH4781kt1VRBG97yIYl32bmm8nkG4BDnhqOqcgCRHQBisEsSDE9DeIIuUq5jFPfkuXxRvZ68dOTuq3A8ewujLXWF5_ZE3r0Z_mYmwmlyuqk3SZ5PAdzUkbFXa2Z1ZWRKPQxm24DO1YwPZJsqPr9ddcFgrx5QmxbhOKbC_I9VX4YYu9dOiv_-65VWC5ZJGsVsK9BxQ7WYemLtuA6LPjaTjPagHG71Q06efuMtRiVdbCWMZOhNu_shiLzN58cZefWvjCS6nDz9oracOYILbt0VoV18qGxrPuZT2R5xi76-YCScMjuJkNvQNm116OlAZvw0Lm4b18FZbOFwHDVHAeY2oaWvKHjTMXW8cQ04zpyzop8HKlihRhqF7xJunkboeToyAlmjh5EMTatCregOsgHdhsY50pH6jQzJERjlFYmFFagVFpoVCKrQX26_okplcipIUY_8RFJQyUOsYQQS0rEanA0e-OlUOH4Y-wGITQbV4JTg70pxEm5TUeJ53-OdAq18_tbu7BIcxc5lz2oujW0-zBvXsfPo-GB_wM_AIHd118 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58oh58i_W5By-Cse1mTbLeSrVabItgFW9hs7MBQRrpQ_Hfu7NJq6II3nLYTUK-7Mw3s7PfABzxRHNMROohog1QNKZegsmZFwXIZcLDKHEtWR5aYacTPT7K2yk4mZyFMca44jNzSpduLx8zPaJUWZm020IeTcMsdc4qTmtN7G4YiFwhs2qXsOUF403Jiix3m20bCvLqKfFt4YtvTsh1Vflhip1_aaz8781WYbngkayWA78GU6a3Dktf1AXXYd5Vd-rBBgzrtbbXyOrnrMaosIPVtB71lX5nLYrN31x6lF0Y88JIrMPet5NXhzNLadmVtSuskfW1Ye3PjCLLUnb5nPUoDYfsbtR3JpQ1nSItDdiE-8Zlt37tFe0WPM1ldehhYioq5BUVpTIylikmKVeBdVfk5UgXy0df2fAtpLO3AYYcLT3B1BKEIMKqkf4WzPSyntkGxrlUgTxLNUnRaKmk9oURGEolFEqRlqA8_v6xLrTIqSXGc-xikoqMLWIxIRYXiJXgeDLjJdfh-GPsBiE0GVeAU4K9McRxsVAHsWOAlnYKufP7rENYuO62W3Gr2bnZhUV6Tp6B2YMZ-z3NPszp1-HToH_g_sYP5c3aqA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CAM-FoC%3A+A+High+Accuracy+Lightweight+Deep+Neural+Network+for+Grip+Force+Measurement+of+Elongated+Surgical+Instrument&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Guo%2C+Yongchen&rft.au=Pan%2C+Bo&rft.au=Fu%2C+Yili&rft.au=Meng%2C+Max+Q.-H.&rft.date=2021&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=70&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2021.3064434&rft.externalDocID=9371728 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |