CAM-FoC: A High Accuracy Lightweight Deep Neural Network for Grip Force Measurement of Elongated Surgical Instrument

Grip force measurement enables better control performance for robot-assisted minimally invasive surgery (RMIS). A deep-learning-based method is proposed to measure the instrument grip force without mounting additional sensors in this article. First, the training trajectory and input data frame are s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on instrumentation and measurement Ročník 70; s. 1 - 12
Hlavní autori: Guo, Yongchen, Pan, Bo, Fu, Yili, Meng, Max Q.-H.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9456, 1557-9662
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Grip force measurement enables better control performance for robot-assisted minimally invasive surgery (RMIS). A deep-learning-based method is proposed to measure the instrument grip force without mounting additional sensors in this article. First, the training trajectory and input data frame are studied. Seven data are derived from the original sensor data, and a binary butterfly optimization algorithm with opposite-based learning (bBOA-OBL) is conducted to form the suitable input data frame. Based on the data frame, a novel convolutional network with an attention mechanism and feedforward of current (CAM-FoC) is proposed to calculate the grip force. The results of the ablation study tell that the master-slave trajectory has the highest accuracy, the optimized input data frame can reduce the error by 17%, and each component of CAM-FoC can enhance the measurement accuracy. Experiments and comparisons are also carried out. The root mean squared error (RMSE) in the experiment is only 0.1233 N and is lower than four other popular methods. In addition, the average computation time is around 2 ms on different platforms. The method manifests higher measurement accuracy than the state-of-the-art and is of acceptable computational complexity. The technology would potentially achieve grip force feedback in clinical usage, which can significantly improve surgery performance. The method could also be used by other robots composed of the cable-pulley mechanism to acquire external forces.
AbstractList Grip force measurement enables better control performance for robot-assisted minimally invasive surgery (RMIS). A deep-learning-based method is proposed to measure the instrument grip force without mounting additional sensors in this article. First, the training trajectory and input data frame are studied. Seven data are derived from the original sensor data, and a binary butterfly optimization algorithm with opposite-based learning (bBOA-OBL) is conducted to form the suitable input data frame. Based on the data frame, a novel convolutional network with an attention mechanism and feedforward of current (CAM-FoC) is proposed to calculate the grip force. The results of the ablation study tell that the master-slave trajectory has the highest accuracy, the optimized input data frame can reduce the error by 17%, and each component of CAM-FoC can enhance the measurement accuracy. Experiments and comparisons are also carried out. The root mean squared error (RMSE) in the experiment is only 0.1233 N and is lower than four other popular methods. In addition, the average computation time is around 2 ms on different platforms. The method manifests higher measurement accuracy than the state-of-the-art and is of acceptable computational complexity. The technology would potentially achieve grip force feedback in clinical usage, which can significantly improve surgery performance. The method could also be used by other robots composed of the cable-pulley mechanism to acquire external forces.
Author Guo, Yongchen
Pan, Bo
Fu, Yili
Meng, Max Q.-H.
Author_xml – sequence: 1
  givenname: Yongchen
  orcidid: 0000-0001-8702-0239
  surname: Guo
  fullname: Guo, Yongchen
  organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Bo
  orcidid: 0000-0001-8954-399X
  surname: Pan
  fullname: Pan, Bo
  email: panbo4034@163.com
  organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Yili
  orcidid: 0000-0001-7720-654X
  surname: Fu
  fullname: Fu, Yili
  organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
– sequence: 4
  givenname: Max Q.-H.
  orcidid: 0000-0002-5255-5898
  surname: Meng
  fullname: Meng, Max Q.-H.
  organization: Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
BookMark eNp9kE1PwkAQhjcGE0G9m3jZxHNx9qO7XW8EQUlAD-q5WdopFqGL220I_942EA8evMxkMu8zkzwD0qtchYTcMBgyBub-fbYYcuBsKEBJKeQZ6bM41pFRivdIH4AlkZGxuiCDul4DgFZS90kYjxbR1I0f6Ig-l6tPOsqyxtvsQOftFPbYVfqIuKMv2C42bQt7579o4Tx98uWOTp3PkC7Q1o3HLVaBuoJONq5a2YA5fWv8qsxacFbVwTdd4IqcF3ZT4_WpX5KP6eR9_BzNX59m49E8yrhhIcqXCFZzsElhEmQsXhbcKm6MAKGYBCNyYYGB5lxJlWueg2Z5wbhUSc7QiEtyd7y78-67wTqka9f4qn2Z8hhiBUksu5Q6pjLv6tpjkWZlsKF0VfC23KQM0s5w2hpOO8PpyXALwh9w58ut9Yf_kNsjUiLib9wIzTRPxA8x8oaM
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_JSEN_2022_3224042
crossref_primary_10_1109_LRA_2023_3252364
crossref_primary_10_1109_TIM_2021_3124039
crossref_primary_10_3389_fpls_2022_1008819
crossref_primary_10_1109_TIM_2022_3162596
crossref_primary_10_1109_TIM_2025_3545167
crossref_primary_10_1145_3617370
crossref_primary_10_1109_TIM_2023_3288245
crossref_primary_10_1109_TIM_2023_3298396
crossref_primary_10_1109_TIM_2025_3561379
crossref_primary_10_1109_TIM_2022_3204086
crossref_primary_10_1109_TIM_2022_3149109
Cites_doi 10.1007/978-3-319-32552-1
10.1109/TRO.2012.2194889
10.1109/LRA.2017.2666420
10.1109/IROS.2014.6942726
10.3390/s19235291
10.1016/j.eswa.2018.08.051
10.1109/ROBIO49542.2019.8961473
10.1109/CIMCA.2005.1631345
10.1007/978-1-4419-1126-1
10.1109/MIM.2020.9200875
10.1145/3063592
10.1109/MIM.2014.6825388
10.1109/FUZZ-IEEE.2016.7737812
10.1109/JSEN.2008.917481
10.1109/TIM.2019.2909603
10.1016/j.jtcvs.2007.08.043
10.1109/CVPR.2016.90
10.1109/ROBOT.2009.5152705
10.1109/LRA.2017.2676347
10.1109/ICRA.2016.7487605
10.1109/TRO.2015.2473515
10.1016/j.bspc.2019.01.011
10.12783/dtcse/aita2017/16022
10.1007/978-3-030-01234-2_1
10.1142/S0219843615500139
10.1002/rcs.1532
10.1109/ICSMC.1997.637339
10.1007/s12555-014-0100-x
10.3390/s18072067
10.1007/s11548-018-1866-8
10.1109/TIM.2018.2834085
10.1109/TCDS.2020.2981876
10.3390/s17112455
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2021.3064434
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 12
ExternalDocumentID 10_1109_TIM_2021_3064434
9371728
Genre orig-research
GrantInformation_xml – fundername: Jiangsu Province Science and Technology Pillar Program
  grantid: CE20190106
  funderid: 10.13039/501100004610
– fundername: Stake Key Laboratory of Robotics and Systems
  grantid: SKLRS202009B
– fundername: Jiangsu Province Key Research and Development Plan
  grantid: BE2019038
– fundername: National Natural Science Foundation of China
  grantid: 61803341
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-dbe0a720a8f98e115bf2a6299303614093d3a010722646d72d071df12468d1e93
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000633244500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:18:06 EDT 2025
Sat Nov 29 04:38:10 EST 2025
Tue Nov 18 22:21:56 EST 2025
Wed Aug 27 02:44:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-dbe0a720a8f98e115bf2a6299303614093d3a010722646d72d071df12468d1e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8702-0239
0000-0002-5255-5898
0000-0001-8954-399X
0000-0001-7720-654X
PQID 2505608549
PQPubID 85462
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TIM_2021_3064434
ieee_primary_9371728
proquest_journals_2505608549
crossref_primary_10_1109_TIM_2021_3064434
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref14
ref31
ref33
ref11
ref32
ref10
ref2
lin (ref30) 2013
ref1
ref17
ref16
simonyan (ref36) 2014
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref9
krizhevsky (ref35) 2012
ref4
ref3
ref6
ref5
abadi (ref27) 2015
References_xml – ident: ref1
  doi: 10.1007/978-3-319-32552-1
– ident: ref15
  doi: 10.1109/TRO.2012.2194889
– ident: ref8
  doi: 10.1109/LRA.2017.2666420
– ident: ref26
  doi: 10.1109/IROS.2014.6942726
– ident: ref25
  doi: 10.3390/s19235291
– ident: ref10
  doi: 10.1016/j.eswa.2018.08.051
– ident: ref7
  doi: 10.1109/ROBIO49542.2019.8961473
– ident: ref11
  doi: 10.1109/CIMCA.2005.1631345
– ident: ref4
  doi: 10.1007/978-1-4419-1126-1
– ident: ref5
  doi: 10.1109/MIM.2020.9200875
– ident: ref33
  doi: 10.1145/3063592
– ident: ref31
  doi: 10.1109/MIM.2014.6825388
– ident: ref18
  doi: 10.1109/FUZZ-IEEE.2016.7737812
– ident: ref12
  doi: 10.1109/JSEN.2008.917481
– ident: ref32
  doi: 10.1109/TIM.2019.2909603
– ident: ref3
  doi: 10.1016/j.jtcvs.2007.08.043
– ident: ref37
  doi: 10.1109/CVPR.2016.90
– ident: ref2
  doi: 10.1109/ROBOT.2009.5152705
– ident: ref22
  doi: 10.1109/LRA.2017.2676347
– ident: ref21
  doi: 10.1109/ICRA.2016.7487605
– ident: ref14
  doi: 10.1109/TRO.2015.2473515
– ident: ref20
  doi: 10.1016/j.bspc.2019.01.011
– ident: ref13
  doi: 10.12783/dtcse/aita2017/16022
– ident: ref29
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref24
  doi: 10.1142/S0219843615500139
– start-page: 1097
  year: 2012
  ident: ref35
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref16
  doi: 10.1002/rcs.1532
– ident: ref28
  doi: 10.1109/ICSMC.1997.637339
– ident: ref23
  doi: 10.1007/s12555-014-0100-x
– ident: ref17
  doi: 10.3390/s18072067
– ident: ref9
  doi: 10.1007/s11548-018-1866-8
– ident: ref34
  doi: 10.1109/TIM.2018.2834085
– ident: ref6
  doi: 10.1109/TCDS.2020.2981876
– ident: ref19
  doi: 10.3390/s17112455
– year: 2015
  ident: ref27
  publication-title: TensorFlow Large-Scale Machine Learning on Heterogeneous Systems
– year: 2014
  ident: ref36
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
– year: 2013
  ident: ref30
  article-title: Network in network
  publication-title: arXiv 1312 4400
SSID ssj0007647
Score 2.4891307
Snippet Grip force measurement enables better control performance for robot-assisted minimally invasive surgery (RMIS). A deep-learning-based method is proposed to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Ablation
Accuracy
Algorithms
Artificial neural networks
Attention mechanism
Control equipment
convolutional neural network (CNN)
Error reduction
Force
Force measurement
Force sensors
Grip force
grip force measurement
Instruments
Machine learning
Optimization
Robot control
robot-assisted minimally invasive surgery (RMIS)
Robotic surgery
Root-mean-square errors
Sensors
Surgery
Surgical instruments
Trajectory
Title CAM-FoC: A High Accuracy Lightweight Deep Neural Network for Grip Force Measurement of Elongated Surgical Instrument
URI https://ieeexplore.ieee.org/document/9371728
https://www.proquest.com/docview/2505608549
Volume 70
WOSCitedRecordID wos000633244500017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qUdCDb7G-yMGL4No2Gzcbb6VaFWwRfOBtyWayIJSu9KH4781kt1VRBG97yIYl32bmm8nkG4BDnhqOqcgCRHQBisEsSDE9DeIIuUq5jFPfkuXxRvZ68dOTuq3A8ewujLXWF5_ZE3r0Z_mYmwmlyuqk3SZ5PAdzUkbFXa2Z1ZWRKPQxm24DO1YwPZJsqPr9ddcFgrx5QmxbhOKbC_I9VX4YYu9dOiv_-65VWC5ZJGsVsK9BxQ7WYemLtuA6LPjaTjPagHG71Q06efuMtRiVdbCWMZOhNu_shiLzN58cZefWvjCS6nDz9oracOYILbt0VoV18qGxrPuZT2R5xi76-YCScMjuJkNvQNm116OlAZvw0Lm4b18FZbOFwHDVHAeY2oaWvKHjTMXW8cQ04zpyzop8HKlihRhqF7xJunkboeToyAlmjh5EMTatCregOsgHdhsY50pH6jQzJERjlFYmFFagVFpoVCKrQX26_okplcipIUY_8RFJQyUOsYQQS0rEanA0e-OlUOH4Y-wGITQbV4JTg70pxEm5TUeJ53-OdAq18_tbu7BIcxc5lz2oujW0-zBvXsfPo-GB_wM_AIHd118
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58oh58i_W5By-Cse1mTbLeSrVabItgFW9hs7MBQRrpQ_Hfu7NJq6II3nLYTUK-7Mw3s7PfABzxRHNMROohog1QNKZegsmZFwXIZcLDKHEtWR5aYacTPT7K2yk4mZyFMca44jNzSpduLx8zPaJUWZm020IeTcMsdc4qTmtN7G4YiFwhs2qXsOUF403Jiix3m20bCvLqKfFt4YtvTsh1Vflhip1_aaz8781WYbngkayWA78GU6a3Dktf1AXXYd5Vd-rBBgzrtbbXyOrnrMaosIPVtB71lX5nLYrN31x6lF0Y88JIrMPet5NXhzNLadmVtSuskfW1Ye3PjCLLUnb5nPUoDYfsbtR3JpQ1nSItDdiE-8Zlt37tFe0WPM1ldehhYioq5BUVpTIylikmKVeBdVfk5UgXy0df2fAtpLO3AYYcLT3B1BKEIMKqkf4WzPSyntkGxrlUgTxLNUnRaKmk9oURGEolFEqRlqA8_v6xLrTIqSXGc-xikoqMLWIxIRYXiJXgeDLjJdfh-GPsBiE0GVeAU4K9McRxsVAHsWOAlnYKufP7rENYuO62W3Gr2bnZhUV6Tp6B2YMZ-z3NPszp1-HToH_g_sYP5c3aqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CAM-FoC%3A+A+High+Accuracy+Lightweight+Deep+Neural+Network+for+Grip+Force+Measurement+of+Elongated+Surgical+Instrument&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Guo%2C+Yongchen&rft.au=Pan%2C+Bo&rft.au=Fu%2C+Yili&rft.au=Meng%2C+Max+Q.-H.&rft.date=2021&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=70&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2021.3064434&rft.externalDocID=9371728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon