Hierarchical Two-Stream Growing Self-Organizing Maps With Transience for Human Activity Recognition

The rapid growth in autonomous industrial environments has increased the need for intelligent video surveillance. As a predominant element of video surveillance, recognition of complex human movements is important in a wide range of surveillance applications. However, the current state-of-the-art vi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial informatics Ročník 16; číslo 12; s. 7756 - 7764
Hlavní autoři: Nawaratne, Rashmika, Alahakoon, Damminda, De Silva, Daswin, Kumara, Harsha, Yu, Xinghuo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1551-3203, 1941-0050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The rapid growth in autonomous industrial environments has increased the need for intelligent video surveillance. As a predominant element of video surveillance, recognition of complex human movements is important in a wide range of surveillance applications. However, the current state-of-the-art video surveillance techniques use supervised deep learning pipelines for human activity recognition (HAR). A key shortcoming of such techniques is the inability to learn from unlabeled video streams. To operate effectively in natural environments, video surveillance techniques have to be able to handle huge volumes of unlabeled video data, monitor and generate alerts and insights derived from multiple characteristics such as spatial structure, motion flow, color distribution, etc. Furthermore, most conventional learning systems lack memory persistence capability which can reduce the influence of outdated information in memory-guided decision-making resulting in limiting plasticity and overfitting based on specific past events. In this article, we propose a new adaptation of the Growing Self-Organizing Map (GSOM) to address these shortcomings by 1) adopting two proven concepts of traditional deep learning, hierarchical, and multistream learning, applied into GSOM self-structuring architecture to accommodate learning from unlabeled video data and their diverse characteristics, 2) address overfitting and the influence of outdated information on neural architecture by implementing a transience property in the algorithm. We demonstrate the proposed model using three benchmark video datasets and the results confirm its validity and usability for HAR.
AbstractList The rapid growth in autonomous industrial environments has increased the need for intelligent video surveillance. As a predominant element of video surveillance, recognition of complex human movements is important in a wide range of surveillance applications. However, the current state-of-the-art video surveillance techniques use supervised deep learning pipelines for human activity recognition (HAR). A key shortcoming of such techniques is the inability to learn from unlabeled video streams. To operate effectively in natural environments, video surveillance techniques have to be able to handle huge volumes of unlabeled video data, monitor and generate alerts and insights derived from multiple characteristics such as spatial structure, motion flow, color distribution, etc. Furthermore, most conventional learning systems lack memory persistence capability which can reduce the influence of outdated information in memory-guided decision-making resulting in limiting plasticity and overfitting based on specific past events. In this article, we propose a new adaptation of the Growing Self-Organizing Map (GSOM) to address these shortcomings by 1) adopting two proven concepts of traditional deep learning, hierarchical, and multistream learning, applied into GSOM self-structuring architecture to accommodate learning from unlabeled video data and their diverse characteristics, 2) address overfitting and the influence of outdated information on neural architecture by implementing a transience property in the algorithm. We demonstrate the proposed model using three benchmark video datasets and the results confirm its validity and usability for HAR.
Author De Silva, Daswin
Kumara, Harsha
Yu, Xinghuo
Nawaratne, Rashmika
Alahakoon, Damminda
Author_xml – sequence: 1
  givenname: Rashmika
  orcidid: 0000-0001-6641-2153
  surname: Nawaratne
  fullname: Nawaratne, Rashmika
  email: b.nawaratne@latrobe.edu.au
  organization: Centre for Data Analytics and Cognition at La Trobe University, Melbourne, VIC, Australia
– sequence: 2
  givenname: Damminda
  surname: Alahakoon
  fullname: Alahakoon, Damminda
  email: d.alahakoon@latrobe.edu.au
  organization: Centre for Data Analytics and Cognition at La Trobe University, Melbourne, VIC, Australia
– sequence: 3
  givenname: Daswin
  orcidid: 0000-0003-3878-5969
  surname: De Silva
  fullname: De Silva, Daswin
  email: d.desilva@latrobe.edu.au
  organization: Centre for Data Analytics and Cognition at La Trobe University, Melbourne, VIC, Australia
– sequence: 4
  givenname: Harsha
  surname: Kumara
  fullname: Kumara, Harsha
  email: h.kumara@latrobe.edu.au
  organization: Centre for Data Analytics and Cognition at La Trobe University, Melbourne, VIC, Australia
– sequence: 5
  givenname: Xinghuo
  orcidid: 0000-0001-8093-9787
  surname: Yu
  fullname: Yu, Xinghuo
  email: xinghuo.yu@rmit.edu.au
  organization: School of Engineering, RMIT University, Melbourne, VIC, Australia
BookMark eNp9kE1LAzEQhoMo-HkXvAQ8b83n7uZYitqCUtAVj0ucTWrKNqnZ1FJ_vbtUPHjwNDPwPjPMc4oOffAGoUtKRpQSdVPNZiNGqBoxJQshxQE6oUrQjBBJDvteSppxRvgxOu26JSG8IFydIJg6E3WEdwe6xdU2ZM8pGr3C9zFsnV_gZ9PabB4X2ruvYX7U6w6_uvSOq6h954wHg22IeLpZaY_HkNynSzv8ZCAsvEsu-HN0ZHXbmYufeoZe7m6ryTR7mN_PJuOHDJiiKWveclbonJbSKktAy8aANCAaKJuiaHLQBRXQCA7KytJaaYUwmlrOlWRWAz9D1_u96xg-NqZL9TJsou9P1kyInORlzlifIvsUxNB10dh6Hd1Kx11NST2orHuV9aCy_lHZI_kfBFzSw2spatf-B17tQWeM-b1TKsakIvwb7ZSEZg
CODEN ITIICH
CitedBy_id crossref_primary_10_1038_s41598_023_41231_0
crossref_primary_10_1109_ACCESS_2020_3000829
crossref_primary_10_1109_TII_2023_3264284
crossref_primary_10_1109_TII_2022_3192398
crossref_primary_10_1109_JIOT_2020_3033430
crossref_primary_10_1109_JIOT_2020_2966792
crossref_primary_10_1109_TII_2020_3037286
crossref_primary_10_1007_s11042_023_17748_x
crossref_primary_10_1007_s44163_024_00123_6
crossref_primary_10_1155_2022_5681412
crossref_primary_10_3390_en17143572
crossref_primary_10_1109_ACCESS_2021_3111053
crossref_primary_10_1109_JSEN_2024_3511087
crossref_primary_10_1016_j_ins_2023_119717
crossref_primary_10_3390_app14156800
crossref_primary_10_1109_TNNLS_2022_3185638
crossref_primary_10_3390_make6020051
crossref_primary_10_3390_en17081935
crossref_primary_10_1007_s10796_020_10056_x
Cites_doi 10.1109/TMM.2012.2188783
10.1109/ICME.2018.8486447
10.1109/CVPR.2009.5206744
10.1145/1290082.1290111
10.1109/CVPR.2009.5206821
10.1109/TCSVT.2018.2889514
10.1109/TII.2013.2255616
10.3390/app7010110
10.3389/fnbot.2015.00003
10.1162/neco.1994.6.1.100
10.1109/TPAMI.2012.253
10.1007/978-3-642-56927-2
10.1109/CVPR.2005.177
10.1109/RTEICT.2017.8256851
10.1016/j.cviu.2016.04.009
10.1109/TPAMI.2016.2537337
10.1109/CVPR.2014.107
10.1016/j.neuron.2017.04.037
10.1109/IJCNN.2010.5596612
10.1109/TPAMI.2007.70711
10.1109/72.846732
10.1109/IJCNN.2017.7965886
10.1109/ICPR.2004.1334462
10.1109/IECON.2017.8216826
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2019.2957454
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1941-0050
EndPage 7764
ExternalDocumentID 10_1109_TII_2019_2957454
8922590
Genre orig-research
GrantInformation_xml – fundername: La Trobe University Postgraduate Research Scholarship
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-db627a6185f9f0ca5dec5ec4dc8d77d6ca714cd43c9f58ff5f44ea1f33952fac3
IEDL.DBID RIE
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000572631900050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:21:15 EDT 2025
Tue Nov 18 21:52:55 EST 2025
Sat Nov 29 04:16:50 EST 2025
Wed Aug 27 02:31:57 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-db627a6185f9f0ca5dec5ec4dc8d77d6ca714cd43c9f58ff5f44ea1f33952fac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3878-5969
0000-0001-6641-2153
0000-0001-8093-9787
PQID 2446068622
PQPubID 85507
PageCount 9
ParticipantIDs proquest_journals_2446068622
ieee_primary_8922590
crossref_primary_10_1109_TII_2019_2957454
crossref_citationtrail_10_1109_TII_2019_2957454
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
liu (ref1) 2013; 9
umakanthan (ref11) 2016
ref2
ref17
ref16
ref19
ref18
ref24
ref23
ref25
ref20
bergstra (ref26) 2012; 13
simonyan (ref4) 0
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
nawaratne (ref5) 2019
ref3
ref6
kong (ref10) 2018
References_xml – ident: ref22
  doi: 10.1109/TMM.2012.2188783
– ident: ref29
  doi: 10.1109/ICME.2018.8486447
– ident: ref25
  doi: 10.1109/CVPR.2009.5206744
– ident: ref14
  doi: 10.1145/1290082.1290111
– ident: ref17
  doi: 10.1109/CVPR.2009.5206821
– ident: ref21
  doi: 10.1109/TCSVT.2018.2889514
– volume: 9
  start-page: 1222
  year: 2013
  ident: ref1
  article-title: Intelligent video systems and analytics: A survey
  publication-title: IEEE Trans Ind Informat
  doi: 10.1109/TII.2013.2255616
– ident: ref2
  doi: 10.3390/app7010110
– ident: ref15
  doi: 10.3389/fnbot.2015.00003
– year: 2019
  ident: ref5
  article-title: Spatiotemporal anomaly detection using deep learning for real-time video surveillance
  publication-title: IEEE Trans Ind Informat
– ident: ref18
  doi: 10.1162/neco.1994.6.1.100
– ident: ref12
  doi: 10.1109/TPAMI.2012.253
– year: 2018
  ident: ref10
  article-title: Human action recognition and prediction: A survey
– ident: ref19
  doi: 10.1007/978-3-642-56927-2
– ident: ref16
  doi: 10.1109/CVPR.2005.177
– ident: ref3
  doi: 10.1109/RTEICT.2017.8256851
– ident: ref8
  doi: 10.1016/j.cviu.2016.04.009
– ident: ref13
  doi: 10.1109/TPAMI.2016.2537337
– ident: ref27
  doi: 10.1109/CVPR.2014.107
– ident: ref9
  doi: 10.1016/j.neuron.2017.04.037
– ident: ref20
  doi: 10.1109/IJCNN.2010.5596612
– ident: ref23
  doi: 10.1109/TPAMI.2007.70711
– ident: ref7
  doi: 10.1109/72.846732
– ident: ref28
  doi: 10.1109/IJCNN.2017.7965886
– year: 2016
  ident: ref11
  article-title: Human action recognition from video sequences
– start-page: 568
  year: 0
  ident: ref4
  article-title: Two-stream convolutional networks for action recognition in videos
  publication-title: Advances in Neural Information Processing Systems 27
– ident: ref24
  doi: 10.1109/ICPR.2004.1334462
– ident: ref6
  doi: 10.1109/IECON.2017.8216826
– volume: 13
  start-page: 281
  year: 2012
  ident: ref26
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
SSID ssj0037039
Score 2.4252017
Snippet The rapid growth in autonomous industrial environments has increased the need for intelligent video surveillance. As a predominant element of video...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7756
SubjectTerms Activity recognition
Algorithms
Architecture
Decision making
Deep learning
Feature extraction
Forgetting
hierarchical learning
Histograms
Human activity recognition
human activity recognition (HAR)
Machine learning
Moving object recognition
neural networks
Neurons
Optical flow
Self organizing maps
Self-organizing feature maps
Surveillance
Video data
Video surveillance
Title Hierarchical Two-Stream Growing Self-Organizing Maps With Transience for Human Activity Recognition
URI https://ieeexplore.ieee.org/document/8922590
https://www.proquest.com/docview/2446068622
Volume 16
WOSCitedRecordID wos000572631900050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qHvTgW1xf5OBFMG7TJk3nKOLroIiu6K2kkwQX1t3FXfXvm2TbRVEEby1MoPSbZGYyj4-QAwChueacoQ1pRlVZplFJxqs8Ra0cpsZFsgl1c1M8PcHtDDma9sJYa2PxmT0OjzGXbwb4Fq7K2gV47QMfoM8qlU96tZpTN_OaC3E2quQsS5OsSUkm0O5cXYUaLjhOQSohxTcTFDlVfhzE0bqcL__vu1bIUu1F0pMJ7KtkxvbXyOKX2YLrBC-7obc4Up30aOdjwEICWr_QCx94ewl6b3uO1a2Y4f1aD0f0sTt-ptF-xS1PvUtL4z0_PcEJzwS9a0qOBv0N8nB-1jm9ZDWjAsMU-JgZj4DSubfRDlyCWhqL0qIwWBilTO7R4QKNyBCcLJyTTgirucsykKnTmG2Suf6gb7cIrSDLFa9M4gpv5SEHi5XKlXd3hE20qlqk3fzkEutx44H1olfGsCOB0sNSBljKGpYWOZyuGE5Gbfwhux5gmMrVCLTIboNjWe_FUekdmDw2wqTbv6_aIQtpiKJjkcoumRu_vtk9Mo_v4-7odT-q2SchbNGH
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9KLagPWq3i2Q_z4ItgepvdZLPzWIrtHW0PaU_s25KdJPTgvCu9q_77JrndQ7EIfduFCSz7m2RmMh8_gI-I0ggjBCcX04y6cdyQVlw0ZU5Ge8qtT2QTejSqrq_x6wZ8XvfCOOdS8Zk7jI8pl2_ndB-vyvoVBu3DEKA_UcGOlqture7cLYLuYpqOqgQv8qzokpIZ9sfDYaziwsMclZZK_mWEEqvKP0dxsi8nLx_3ZdvwovUj2dEK-Few4Wav4fkf0wV3gAaT2F2cyE6mbPxrzmMK2vxgpyH0DhLsyk09b5sx4_uFuV2w75PlDUsWLG16Fpxalm762RGtmCbYZVd0NJ-9gW8nX8bHA95yKnDKUSy5DRhoUwYr7dFnZJR1pBxJS5XV2pYBHyHJyoLQq8p75aV0RviiQJV7Q8Vb2JzNZ-4dsAaLUovGZr4Kdh5LdNToUgeHR7rM6KYH_e4n19QOHI-8F9M6BR4Z1gGWOsJSt7D04NN6xe1q2MZ_ZHciDGu5FoEe7HU41u1uXNTBhSlTK0z-_uFVH-DpYHxxXp8PR2e78CyPMXUqWdmDzeXdvduHLfq5nCzuDpLK_QZNJdTa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Two-Stream+Growing+Self-Organizing+Maps+With+Transience+for+Human+Activity+Recognition&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Nawaratne%2C+Rashmika&rft.au=Alahakoon%2C+Damminda&rft.au=De+Silva%2C+Daswin&rft.au=Kumara%2C+Harsha&rft.date=2020-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=16&rft.issue=12&rft.spage=7756&rft_id=info:doi/10.1109%2FTII.2019.2957454&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon