A Pattern Driven Graph Ranking Approach to Attribute Extraction for Knowledge Graph
Attribution extraction refers to find the attributes for the instances of a given semantic class, which is essential to enhance the schema of a knowledge graph. To facilitate the attribution extraction from the query log, this article proposes a pattern driven graph ranking approach to jointly emplo...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial informatics Ročník 18; číslo 2; s. 1250 - 1259 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Attribution extraction refers to find the attributes for the instances of a given semantic class, which is essential to enhance the schema of a knowledge graph. To facilitate the attribution extraction from the query log, this article proposes a pattern driven graph ranking approach to jointly employ the pattern and context distribution information. First, a simple pattern on query text is applied to automatically acquire seed attributes. Then, a graph-based weight propagation is designed to rank the patterns by context distribution algorithm information. Experimental results show that, on a Chinese query log collected by Baidu, the automatically acquired seeds are more representative than the classical manually assembled seeds, achieving an improvement of 11.6% in MAP as compared to the baseline approach. And the graph-based ranking algorithm manipulates the two types of evidence more effectively, outperforming both the distributional similarity based baseline and the HITS algorithm by 29.2% and 11.3%, respectively. |
|---|---|
| AbstractList | Attribution extraction refers to find the attributes for the instances of a given semantic class, which is essential to enhance the schema of a knowledge graph. To facilitate the attribution extraction from the query log, this article proposes a pattern driven graph ranking approach to jointly employ the pattern and context distribution information. First, a simple pattern on query text is applied to automatically acquire seed attributes. Then, a graph-based weight propagation is designed to rank the patterns by context distribution algorithm information. Experimental results show that, on a Chinese query log collected by Baidu, the automatically acquired seeds are more representative than the classical manually assembled seeds, achieving an improvement of 11.6% in MAP as compared to the baseline approach. And the graph-based ranking algorithm manipulates the two types of evidence more effectively, outperforming both the distributional similarity based baseline and the HITS algorithm by 29.2% and 11.3%, respectively. |
| Author | Kong, Leilei Chen, Kehai Han, Zhongyuan Yang, Muyun Meng, Qingye Sun, Shuqi |
| Author_xml | – sequence: 1 givenname: Muyun orcidid: 0000-0002-5940-0266 surname: Yang fullname: Yang, Muyun email: yangmuyun@hit.edu.cn organization: School of Computer Science, and Technology, Harbin Institute of Technology, Harbin, China – sequence: 2 givenname: Kehai orcidid: 0000-0002-4346-7618 surname: Chen fullname: Chen, Kehai email: chenkehai@gmail.com organization: School of Computer Science, and Technology, Harbin Institute of Technology, Harbin, China – sequence: 3 givenname: Shuqi orcidid: 0000-0002-7374-3740 surname: Sun fullname: Sun, Shuqi email: sunshuqi01@baidu.com organization: Baidu Inc., Beijing, China – sequence: 4 givenname: Zhongyuan surname: Han fullname: Han, Zhongyuan email: hanzhongyuan@gmail.com organization: Foshan University, Foshan, China – sequence: 5 givenname: Leilei surname: Kong fullname: Kong, Leilei email: kongleilei@fosu.edu.cn organization: Foshan University, Foshan, China – sequence: 6 givenname: Qingye orcidid: 0000-0002-4980-4785 surname: Meng fullname: Meng, Qingye email: mqy1997@hotmail.com organization: School of Computer Science, and Technology, Harbin Institute of Technology, Harbin, China |
| BookMark | eNp9kM1PAjEQxRuDiYDeTbw08bw4_drS4wYRiSQa5d6U3S4Usbt2ix__vUuWePDgaSaZ95t58wao5ytvEbokMCIE1M1yPh9RoGTEQDJJ0xPUJ4qTBEBAr-2FIAmjwM7QoGm2AEwCU330kuEnE6MNHt8G92E9ngVTb_Cz8a_Or3FW16Ey-QbHCmcxBrfaR4unXzGYPLrK47IK-MFXnztbrG0Hn6PT0uwae3GsQ7S8my4n98nicTafZIskp4rEpFixQgDJaSmI5UYpxkEaa9JUAKepNEKJslS5YqvSyHbCpRBjy7lUxqQFG6Lrbm3r8H1vm6i31T749qKmYjwGSQkVrSrtVHmomibYUucumoP19gW30wT0IT_d5qcP-eljfi0If8A6uDcTvv9DrjrEWWt_5YpDyiRjPyFZfA0 |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_1007_s10115_025_02345_1 crossref_primary_10_1016_j_neunet_2024_106715 crossref_primary_10_7717_peerj_cs_1542 crossref_primary_10_1109_TII_2024_3396513 crossref_primary_10_1186_s42162_025_00559_9 crossref_primary_10_1016_j_engappai_2024_109743 crossref_primary_10_1016_j_egyr_2022_07_158 crossref_primary_10_1109_TII_2022_3217825 crossref_primary_10_1016_j_inffus_2024_102817 crossref_primary_10_1109_TII_2024_3523562 crossref_primary_10_2478_amns_2023_2_00457 |
| Cites_doi | 10.1016/j.cageo.2017.12.007 10.1145/3386042 10.1145/1835449.1835462 10.1109/TII.2020.3039500 10.18653/v1/2020.acl-main.553 10.24963/ijcai.2019/740 10.1109/ICSC.2017.85 10.1017/S1351324915000340 10.1145/3371158.3371187 10.1109/TII.2020.2990953 10.24963/ijcai.2019/748 10.1007/BF02985759 10.18653/v1/P17-2084 10.1145/3132847.3132956 10.1145/1645953.1645984 10.1016/j.eswa.2018.07.017 10.18653/v1/P19-1423 10.1007/978-3-642-12275-0_9 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2021.3073726 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 1259 |
| ExternalDocumentID | 10_1109_TII_2021_3073726 9406373 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Social Science Fund of China grantid: 18BYY125 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-db3d501c2f51e4a993407aea66504267a595ff9c93bfa77ae47558e4479aa6d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000712564700055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:07:08 EDT 2025 Tue Nov 18 21:25:32 EST 2025 Sat Nov 29 04:16:57 EST 2025 Wed Aug 27 02:28:35 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-db3d501c2f51e4a993407aea66504267a595ff9c93bfa77ae47558e4479aa6d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7374-3740 0000-0002-4980-4785 0000-0002-4346-7618 0000-0002-5940-0266 |
| PQID | 2588072125 |
| PQPubID | 85507 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_TII_2021_3073726 crossref_primary_10_1109_TII_2021_3073726 proquest_journals_2588072125 ieee_primary_9406373 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 aidan (ref18) 2020; 1 ref20 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref16 ref8 ref7 kozareva (ref19) 0 ref9 zhang (ref23) 0 ref3 langville (ref6) 2008; 30 pa?ca (ref4) 0 pa?ca (ref5) 0 |
| References_xml | – ident: ref10 doi: 10.1016/j.cageo.2017.12.007 – ident: ref3 doi: 10.1145/3386042 – ident: ref12 doi: 10.1145/1835449.1835462 – start-page: 118 year: 0 ident: ref19 article-title: Class label enhancement via related instances publication-title: Proc Conf Empirical Methods Nat Lang Process – ident: ref1 doi: 10.1109/TII.2020.3039500 – ident: ref16 doi: 10.18653/v1/2020.acl-main.553 – ident: ref22 doi: 10.24963/ijcai.2019/740 – ident: ref13 doi: 10.1109/ICSC.2017.85 – ident: ref14 doi: 10.1017/S1351324915000340 – ident: ref8 doi: 10.1145/3371158.3371187 – start-page: 19 year: 0 ident: ref4 article-title: Weakly-supervised acquisition of open-domain classes and class attributes from web documents and query logs publication-title: Proc Assoc Comput Linguistics – ident: ref2 doi: 10.1109/TII.2020.2990953 – ident: ref15 doi: 10.24963/ijcai.2019/748 – volume: 30 start-page: 68 year: 2008 ident: ref6 article-title: Google's pagerank and beyond: The science of search engine rankings publication-title: Math Intelligencer doi: 10.1007/BF02985759 – ident: ref21 doi: 10.18653/v1/P17-2084 – ident: ref20 doi: 10.1145/3132847.3132956 – volume: 1 start-page: 255 year: 2020 ident: ref18 article-title: Information extraction meets the semantic web: A survey publication-title: Semantic Web – ident: ref7 doi: 10.1145/1645953.1645984 – ident: ref9 doi: 10.1016/j.eswa.2018.07.017 – start-page: 101 year: 0 ident: ref5 article-title: Organizing and searching the world wide web of facts - Step two: Harnessing the wisdom of the crowds publication-title: Proc 16th Int Conf World Wide Web – ident: ref17 doi: 10.18653/v1/P19-1423 – start-page: 1159 year: 0 ident: ref23 article-title: Nonlinear evidence fusion and propagation for hyponymy relation mining publication-title: Proc 49th Annu Meeting Assoc Comput Linguistics Hum Lang Technol – ident: ref11 doi: 10.1007/978-3-642-12275-0_9 |
| SSID | ssj0037039 |
| Score | 2.3834915 |
| Snippet | Attribution extraction refers to find the attributes for the instances of a given semantic class, which is essential to enhance the schema of a knowledge... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1250 |
| SubjectTerms | Algorithms Context Data mining Distributional similarity graph-based ranking Informatics Knowledge representation Manuals pattern driven Postal services Queries Ranking Seeds semantic class attributes Semantics Urban areas Web search Web search queries |
| Title | A Pattern Driven Graph Ranking Approach to Attribute Extraction for Knowledge Graph |
| URI | https://ieeexplore.ieee.org/document/9406373 https://www.proquest.com/docview/2588072125 |
| Volume | 18 |
| WOSCitedRecordID | wos000712564700055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Me_Jri_CIHL4Ld0rRpmuPQTYcwhu6wW0naBATppOvEP98kbcdAEbwVmgflvdf3keT9fgA3Ks6UxJE9YVQWVJtiT6RSe8abdGzBWZjEjmyCTafxYsFnLbjbzMIopdzlM9W3j-4sP1uma7tVNuAm-wQsaEObsaia1WqibmA8lztsVOp7AcFBcySJ-WA-mZhGkPh968_MwihspSDHqfIjELvsMj7433cdwn5dRaJhZfYjaKn8GPa2sAW78DpEM4edmaOHwoY09GixqdGLcGQJaFiDiaNyiYZlxXul0OirLKpRB2SqWfTc7LhVwicwH4_m909ezaDgpYT7pZfJIKPYT4mmvgqFqUVM_yaUiExdZlIzE5RTrXnKA6kFM29CRmmswpBxIaIsOIVOvszVGSCJhSlddBgSRkNfKkFkGnEd8Qxrn-u4B4NGp0lao4tbkov3xHUZmCfGCom1QlJboQe3G4mPClnjj7Vdq_XNulrhPbhszJbUv94qIdSEJNPXEnr-u9QF7BI7w-CuXl9CpyzW6gp20s_ybVVcO6_6BmTAyME |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKagHv6Y4nZqDF8Fuado0zXHo5sbmGLrDbiVtExBkk60T_3yTtB0DRfBWaB6U917fR5L3-wHcyjCVMQ7MCaM0oNoUOyKJlaO9SYUGnIXF2JJNsNEonE75uAL361kYKaW9fCab5tGe5afzZGW2ylpcZx-PeVuwbZizimmtMu562ne5RUelruMR7JWHkpi3Jv2-bgWJ2zQezQyQwkYSsqwqP0KxzS_dw_992REcFHUkaueGP4aKnJ3A_ga6YA1e22hs0TNn6HFhghp6MujU6EVYugTULuDEUTZH7SxnvpKo85Ut8mEHpOtZNCj33HLhU5h0O5OHnlNwKDgJ4W7mpLGXUuwmRFFX-kJXI7qDE1IEujLTyZkJyqlSPOFerATTb3xGaSh9n3EhgtQ7g-psPpPngGIsdPGifJ8w6ruxFCROAq4CnmLlchXWoVXqNEoKfHFDc_Ee2T4D80hbITJWiAor1OFuLfGRY2v8sbZmtL5eVyi8Do3SbFHx8y0jQnVQ0p0toRe_S93Abm_yPIyG_dHgEvaImWiwF7EbUM0WK3kFO8ln9rZcXFsP-wYGlswK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pattern+Driven+Graph+Ranking+Approach+to+Attribute+Extraction+for+Knowledge+Graph&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Yang%2C+Muyun&rft.au=Chen%2C+Kehai&rft.au=Sun%2C+Shuqi&rft.au=Han%2C+Zhongyuan&rft.date=2022-02-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=18&rft.issue=2&rft.spage=1250&rft.epage=1259&rft_id=info:doi/10.1109%2FTII.2021.3073726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2021_3073726 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |