A Pattern Driven Graph Ranking Approach to Attribute Extraction for Knowledge Graph

Attribution extraction refers to find the attributes for the instances of a given semantic class, which is essential to enhance the schema of a knowledge graph. To facilitate the attribution extraction from the query log, this article proposes a pattern driven graph ranking approach to jointly emplo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics Vol. 18; no. 2; pp. 1250 - 1259
Main Authors: Yang, Muyun, Chen, Kehai, Sun, Shuqi, Han, Zhongyuan, Kong, Leilei, Meng, Qingye
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1551-3203, 1941-0050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Attribution extraction refers to find the attributes for the instances of a given semantic class, which is essential to enhance the schema of a knowledge graph. To facilitate the attribution extraction from the query log, this article proposes a pattern driven graph ranking approach to jointly employ the pattern and context distribution information. First, a simple pattern on query text is applied to automatically acquire seed attributes. Then, a graph-based weight propagation is designed to rank the patterns by context distribution algorithm information. Experimental results show that, on a Chinese query log collected by Baidu, the automatically acquired seeds are more representative than the classical manually assembled seeds, achieving an improvement of 11.6% in MAP as compared to the baseline approach. And the graph-based ranking algorithm manipulates the two types of evidence more effectively, outperforming both the distributional similarity based baseline and the HITS algorithm by 29.2% and 11.3%, respectively.
AbstractList Attribution extraction refers to find the attributes for the instances of a given semantic class, which is essential to enhance the schema of a knowledge graph. To facilitate the attribution extraction from the query log, this article proposes a pattern driven graph ranking approach to jointly employ the pattern and context distribution information. First, a simple pattern on query text is applied to automatically acquire seed attributes. Then, a graph-based weight propagation is designed to rank the patterns by context distribution algorithm information. Experimental results show that, on a Chinese query log collected by Baidu, the automatically acquired seeds are more representative than the classical manually assembled seeds, achieving an improvement of 11.6% in MAP as compared to the baseline approach. And the graph-based ranking algorithm manipulates the two types of evidence more effectively, outperforming both the distributional similarity based baseline and the HITS algorithm by 29.2% and 11.3%, respectively.
Author Kong, Leilei
Chen, Kehai
Han, Zhongyuan
Yang, Muyun
Meng, Qingye
Sun, Shuqi
Author_xml – sequence: 1
  givenname: Muyun
  orcidid: 0000-0002-5940-0266
  surname: Yang
  fullname: Yang, Muyun
  email: yangmuyun@hit.edu.cn
  organization: School of Computer Science, and Technology, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Kehai
  orcidid: 0000-0002-4346-7618
  surname: Chen
  fullname: Chen, Kehai
  email: chenkehai@gmail.com
  organization: School of Computer Science, and Technology, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Shuqi
  orcidid: 0000-0002-7374-3740
  surname: Sun
  fullname: Sun, Shuqi
  email: sunshuqi01@baidu.com
  organization: Baidu Inc., Beijing, China
– sequence: 4
  givenname: Zhongyuan
  surname: Han
  fullname: Han, Zhongyuan
  email: hanzhongyuan@gmail.com
  organization: Foshan University, Foshan, China
– sequence: 5
  givenname: Leilei
  surname: Kong
  fullname: Kong, Leilei
  email: kongleilei@fosu.edu.cn
  organization: Foshan University, Foshan, China
– sequence: 6
  givenname: Qingye
  orcidid: 0000-0002-4980-4785
  surname: Meng
  fullname: Meng, Qingye
  email: mqy1997@hotmail.com
  organization: School of Computer Science, and Technology, Harbin Institute of Technology, Harbin, China
BookMark eNp9kM1PAjEQxRuDiYDeTbw08bw4_drS4wYRiSQa5d6U3S4Usbt2ix__vUuWePDgaSaZ95t58wao5ytvEbokMCIE1M1yPh9RoGTEQDJJ0xPUJ4qTBEBAr-2FIAmjwM7QoGm2AEwCU330kuEnE6MNHt8G92E9ngVTb_Cz8a_Or3FW16Ey-QbHCmcxBrfaR4unXzGYPLrK47IK-MFXnztbrG0Hn6PT0uwae3GsQ7S8my4n98nicTafZIskp4rEpFixQgDJaSmI5UYpxkEaa9JUAKepNEKJslS5YqvSyHbCpRBjy7lUxqQFG6Lrbm3r8H1vm6i31T749qKmYjwGSQkVrSrtVHmomibYUucumoP19gW30wT0IT_d5qcP-eljfi0If8A6uDcTvv9DrjrEWWt_5YpDyiRjPyFZfA0
CODEN ITIICH
CitedBy_id crossref_primary_10_1007_s10115_025_02345_1
crossref_primary_10_1016_j_neunet_2024_106715
crossref_primary_10_7717_peerj_cs_1542
crossref_primary_10_1109_TII_2024_3396513
crossref_primary_10_1186_s42162_025_00559_9
crossref_primary_10_1016_j_engappai_2024_109743
crossref_primary_10_1016_j_egyr_2022_07_158
crossref_primary_10_1109_TII_2022_3217825
crossref_primary_10_1016_j_inffus_2024_102817
crossref_primary_10_1109_TII_2024_3523562
crossref_primary_10_2478_amns_2023_2_00457
Cites_doi 10.1016/j.cageo.2017.12.007
10.1145/3386042
10.1145/1835449.1835462
10.1109/TII.2020.3039500
10.18653/v1/2020.acl-main.553
10.24963/ijcai.2019/740
10.1109/ICSC.2017.85
10.1017/S1351324915000340
10.1145/3371158.3371187
10.1109/TII.2020.2990953
10.24963/ijcai.2019/748
10.1007/BF02985759
10.18653/v1/P17-2084
10.1145/3132847.3132956
10.1145/1645953.1645984
10.1016/j.eswa.2018.07.017
10.18653/v1/P19-1423
10.1007/978-3-642-12275-0_9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2021.3073726
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 1259
ExternalDocumentID 10_1109_TII_2021_3073726
9406373
Genre orig-research
GrantInformation_xml – fundername: National Social Science Fund of China
  grantid: 18BYY125
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-db3d501c2f51e4a993407aea66504267a595ff9c93bfa77ae47558e4479aa6d3
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000712564700055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:07:08 EDT 2025
Tue Nov 18 21:25:32 EST 2025
Sat Nov 29 04:16:57 EST 2025
Wed Aug 27 02:28:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-db3d501c2f51e4a993407aea66504267a595ff9c93bfa77ae47558e4479aa6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7374-3740
0000-0002-4980-4785
0000-0002-4346-7618
0000-0002-5940-0266
PQID 2588072125
PQPubID 85507
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TII_2021_3073726
crossref_primary_10_1109_TII_2021_3073726
proquest_journals_2588072125
ieee_primary_9406373
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
aidan (ref18) 2020; 1
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref8
ref7
kozareva (ref19) 0
ref9
zhang (ref23) 0
ref3
langville (ref6) 2008; 30
pa?ca (ref4) 0
pa?ca (ref5) 0
References_xml – ident: ref10
  doi: 10.1016/j.cageo.2017.12.007
– ident: ref3
  doi: 10.1145/3386042
– ident: ref12
  doi: 10.1145/1835449.1835462
– start-page: 118
  year: 0
  ident: ref19
  article-title: Class label enhancement via related instances
  publication-title: Proc Conf Empirical Methods Nat Lang Process
– ident: ref1
  doi: 10.1109/TII.2020.3039500
– ident: ref16
  doi: 10.18653/v1/2020.acl-main.553
– ident: ref22
  doi: 10.24963/ijcai.2019/740
– ident: ref13
  doi: 10.1109/ICSC.2017.85
– ident: ref14
  doi: 10.1017/S1351324915000340
– ident: ref8
  doi: 10.1145/3371158.3371187
– start-page: 19
  year: 0
  ident: ref4
  article-title: Weakly-supervised acquisition of open-domain classes and class attributes from web documents and query logs
  publication-title: Proc Assoc Comput Linguistics
– ident: ref2
  doi: 10.1109/TII.2020.2990953
– ident: ref15
  doi: 10.24963/ijcai.2019/748
– volume: 30
  start-page: 68
  year: 2008
  ident: ref6
  article-title: Google's pagerank and beyond: The science of search engine rankings
  publication-title: Math Intelligencer
  doi: 10.1007/BF02985759
– ident: ref21
  doi: 10.18653/v1/P17-2084
– ident: ref20
  doi: 10.1145/3132847.3132956
– volume: 1
  start-page: 255
  year: 2020
  ident: ref18
  article-title: Information extraction meets the semantic web: A survey
  publication-title: Semantic Web
– ident: ref7
  doi: 10.1145/1645953.1645984
– ident: ref9
  doi: 10.1016/j.eswa.2018.07.017
– start-page: 101
  year: 0
  ident: ref5
  article-title: Organizing and searching the world wide web of facts - Step two: Harnessing the wisdom of the crowds
  publication-title: Proc 16th Int Conf World Wide Web
– ident: ref17
  doi: 10.18653/v1/P19-1423
– start-page: 1159
  year: 0
  ident: ref23
  article-title: Nonlinear evidence fusion and propagation for hyponymy relation mining
  publication-title: Proc 49th Annu Meeting Assoc Comput Linguistics Hum Lang Technol
– ident: ref11
  doi: 10.1007/978-3-642-12275-0_9
SSID ssj0037039
Score 2.3834043
Snippet Attribution extraction refers to find the attributes for the instances of a given semantic class, which is essential to enhance the schema of a knowledge...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1250
SubjectTerms Algorithms
Context
Data mining
Distributional similarity
graph-based ranking
Informatics
Knowledge representation
Manuals
pattern driven
Postal services
Queries
Ranking
Seeds
semantic class attributes
Semantics
Urban areas
Web search
Web search queries
Title A Pattern Driven Graph Ranking Approach to Attribute Extraction for Knowledge Graph
URI https://ieeexplore.ieee.org/document/9406373
https://www.proquest.com/docview/2588072125
Volume 18
WOSCitedRecordID wos000712564700055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5a8aAHX1WsL3LwIth2d7NpmmPxWYRStIfelmwyC4K0st2KP99JdrcIiuBtYTMQ5j1J5huAS2ED7AtLhpRKKlCiNCA_SPaYShSBNYKjzfywCTkeD2YzNWnA9boXBhH94zPsuk9_l28XZuWOynqKog-XvAlNKftlr1btdTlprvLYqCLs8Cjg9ZVkoHrT0YgKwSjsOn2WDkbhWwjyM1V-OGIfXe53_7evPdipskg2LMW-Dw2cH8D2N2zBFrwM2cRjZ87Zbe5cGntw2NTsWfthCWxYgYmzYsGGRTn3CtndZ5GXrQ6Msln2VJ-4lcSHML2_m948dqoJCh0TqbDo2JRbEYQmykSIsaZchOo3jbpPeRmFZqmFElmmjOJppiX9iaUQA4xjqbTuW34EG_PFHI-BpToWaInLJqOaAvkg1UbiwFKKpqWRsg29mqeJqdDF3ZCLt8RXGYFKSAqJk0JSSaENV2uK9xJZ44-1Lcf19bqK4W04q8WWVKa3TCJBLonq2kic_E51CluR62HwT6_PYKPIV3gOm-ajeF3mF16rvgA0NMlP
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gXrwLdZnDl4Ea3eTTdMci8-iFtEevC3ZZBYEaaVdxZ_vJLtbBEXwtrAZCPOeJPMNwLF0EbalI0PKFBUoPIvID5I9Zgpl5KwU6PIwbEL1-53nZ_0wA6fTXhhEDI_P8Mx_hrt8N7Lv_qispSn6CCVmYV4mCY_Kbq3a7wrSXR3QUWXcFDwS9aVkpFuDXo9KQR6feY1WHkjhWxAKU1V-uOIQX65W_7ezNVip8kjWLQW_DjM43IDlb-iCm_DUZQ8BPXPILsbeqbFrj07NHk0Yl8C6FZw4K0asW5STr5BdfhbjstmBUT7Lbuszt5J4CwZXl4Pzm2Y1Q6FpuY6LpsuEk1FseS5jTAxlI1TBGTRtyswoOCsjtcxzbbXIcqPoT6Kk7GCSKG1M24ltmBuOhrgDLDOJREdctjlVFSg6mbEKO46SNKOsUg1o1TxNbYUv7sdcvKahzoh0SlJIvRTSSgoNOJlSvJXYGn-s3fRcn66rGN6A_VpsaWV8k5RLckpU2XK5-zvVESzeDO7v0rte_3YPlrjvaAgPsfdhrhi_4wEs2I_iZTI-DBr2Bdg2zJY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pattern+Driven+Graph+Ranking+Approach+to+Attribute+Extraction+for+Knowledge+Graph&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Yang%2C+Muyun&rft.au=Chen%2C+Kehai&rft.au=Sun%2C+Shuqi&rft.au=Han%2C+Zhongyuan&rft.date=2022-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=18&rft.issue=2&rft.spage=1250&rft_id=info:doi/10.1109%2FTII.2021.3073726&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon