Edge-Enhanced QoS Aware Compression Learning for Sustainable Data Stream Analytics

Existing Cloud systems involve large volumes of data streams being sent to a centralised data centre for monitoring, storage and analytics. However, migrating all the data to the cloud is often not feasible due to cost, privacy, and performance concerns. However, Machine Learning (ML) algorithms typ...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on sustainable computing Vol. 8; no. 3; pp. 1 - 17
Main Authors: Amaizu, Maryleen Uluaku, Ali, Muhammad, Anjum, Ashiq, Liu, Lu, Liotta, Antonio, Rana, Omer
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3782, 2377-3790
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Existing Cloud systems involve large volumes of data streams being sent to a centralised data centre for monitoring, storage and analytics. However, migrating all the data to the cloud is often not feasible due to cost, privacy, and performance concerns. However, Machine Learning (ML) algorithms typically require significant computational resources, hence cannot be directly deployed on resource-constrained edge devices for learning and analytics. Edge-enhanced compressive offloading becomes a sustainable solution that allows data to be compressed at the edge and offloaded to the cloud for further analysis, reducing bandwidth consumption and communication latency. The design and implementation of a learning method for discovering compression techniques that offer the best QoS for an application is described. The approach uses a novel modularisation approach that maps features to models and classifies them for a range of Quality of Service (QoS) features. An automated QoS-aware orchestrator has been designed to select the best autoencoder model in real-time for compressive offloading in edge-enhanced clouds based on changing QoS requirements. The orchestrator has been designed to have diagnostic capabilities to search appropriate parameters that give the best compression. A key novelty of this work is harnessing the capabilities of autoencoders for edge-enhanced compressive offloading based on portable encodings, latent space splitting and fine-tuning network weights. Considering how the combination of features lead to different QoS models, the system is capable of processing a large number of user requests in a given time. The proposed hyperparameter search strategy (over the neural architectural space) reduces the computational cost of search through the entire space by up to 89%. When deployed on an edge-enhanced cloud using an Azure IoT testbed, the approach saves up to 70% data transfer costs and takes 32% less time for job completion. It eliminates the additional computational cost of decompression, thereby reducing the processing cost by up to 30%.
AbstractList Existing Cloud systems involve large volumes of data streams being sent to a centralised data centre for monitoring, storage and analytics. However, migrating all the data to the cloud is often not feasible due to cost, privacy, and performance concerns. However, Machine Learning (ML) algorithms typically require significant computational resources, hence cannot be directly deployed on resource-constrained edge devices for learning and analytics. Edge-enhanced compressive offloading becomes a sustainable solution that allows data to be compressed at the edge and offloaded to the cloud for further analysis, reducing bandwidth consumption and communication latency. The design and implementation of a learning method for discovering compression techniques that offer the best QoS for an application is described. The approach uses a novel modularisation approach that maps features to models and classifies them for a range of Quality of Service (QoS) features. An automated QoS-aware orchestrator has been designed to select the best autoencoder model in real-time for compressive offloading in edge-enhanced clouds based on changing QoS requirements. The orchestrator has been designed to have diagnostic capabilities to search appropriate parameters that give the best compression. A key novelty of this work is harnessing the capabilities of autoencoders for edge-enhanced compressive offloading based on portable encodings, latent space splitting and fine-tuning network weights. Considering how the combination of features lead to different QoS models, the system is capable of processing a large number of user requests in a given time. The proposed hyperparameter search strategy (over the neural architectural space) reduces the computational cost of search through the entire space by up to 89%. When deployed on an edge-enhanced cloud using an Azure IoT testbed, the approach saves up to 70% data transfer costs and takes 32% less time for job completion. It eliminates the additional computational cost of decompression, thereby reducing the processing cost by up to 30%.
Author Ali, Muhammad
Amaizu, Maryleen Uluaku
Liotta, Antonio
Anjum, Ashiq
Liu, Lu
Rana, Omer
Author_xml – sequence: 1
  givenname: Maryleen Uluaku
  orcidid: 0000-0002-4280-1450
  surname: Amaizu
  fullname: Amaizu, Maryleen Uluaku
  organization: School of Computing and Mathematical Sciences, University of Leicester, U.K
– sequence: 2
  givenname: Muhammad
  surname: Ali
  fullname: Ali, Muhammad
  organization: School of Computing and Mathematical Sciences, University of Leicester, U.K
– sequence: 3
  givenname: Ashiq
  orcidid: 0000-0002-3378-1152
  surname: Anjum
  fullname: Anjum, Ashiq
  organization: School of Computing and Mathematical Sciences, University of Leicester, U.K
– sequence: 4
  givenname: Lu
  orcidid: 0000-0003-1013-4507
  surname: Liu
  fullname: Liu, Lu
  organization: School of Computing and Mathematical Sciences, University of Leicester, U.K
– sequence: 5
  givenname: Antonio
  orcidid: 0000-0002-2773-4421
  surname: Liotta
  fullname: Liotta, Antonio
  organization: Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
– sequence: 6
  givenname: Omer
  orcidid: 0000-0003-3597-2646
  surname: Rana
  fullname: Rana, Omer
  organization: School of Computer Science and Informatics, Cardiff University, U.K
BookMark eNpNkF1PwjAUhhuDiYj8AeNFE6-Hp-22bpdk4kdCYnRwvXTtGY5Ai-2I4d87hBivzrl4n_ecPNdkYJ1FQm4ZTBiD_GFRLstiwoGLieAJB5FfkCEXUkZC5jD42zN-RcYhrAGASZnknA3Jx8ysMJrZT2U1GvruSjr9Vh5p4bY7jyG0ztI5Km9bu6KN87Tch061VtUbpI-qU7TsPKotnVq1OXStDjfkslGbgOPzHJHl02xRvETzt-fXYjqPNM9ZF5laZLXJQeqaJzFglrBMGqVj3igjZGxSFCZNGkSs0xwhTXQttKw1gKi5AjEi96fenXdfewxdtXZ7338RKp6lPI1zyVmf4qeU9i4Ej0218-1W-UPFoDrqq371VUd91VlfD92doLa__g-ANOYiFT_S0W2s
CODEN ITSCBE
Cites_doi 10.1016/j.bspc.2020.102225
10.1145/3384419.3430898
10.1109/OPNARC.1998.662039
10.1109/TCBB.2022.3185395
10.1145/3274783.3274840
10.1007/978-981-15-6044-6_4
10.1109/ICCIS49240.2020.9257645
10.1109/PCS.2018.8456308
10.1109/CFEC.2018.8358733
10.1109/AVSS.2018.8639121
10.1016/j.future.2019.08.012
10.1109/HICSS.2005.32
10.1109/TMM.2022.3168146
10.1109/CANDAR.2017.13
10.1109/ICCWorkshops49005.2020.9145068
10.1109/JIOT.2016.2579198
10.1109/INFOCOM.2018.8485905
10.1109/BDCAT50828.2020.00018
10.1002/spe.761
10.1109/SECON52354.2021.9491600
10.1109/SiPS50750.2020.9195249
10.1109/MCOM.2018.1700332
10.1109/IWCMC.2018.8450511
10.1016/j.micpro.2021.104032
10.1109/TCC.2020.2991748
10.1016/j.jnca.2020.102696
10.1109/HPCC/SmartCity/DSS.2019.00180
10.1007/3-540-44892-6_19
10.1109/MNET.2018.1700202
10.1109/TII.2017.2679740
10.1109/CCECE.2019.8861806
10.1109/CogMI48466.2019.00035
10.1109/TBC.2011.2104671
10.1109/JSAC.2021.3118346
10.1109/JIOT.2018.2876695
10.1109/JIOT.2020.3027102
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSUSC.2023.3252039
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2377-3790
EndPage 17
ExternalDocumentID 10_1109_TSUSC_2023_3252039
10064236
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IEDLZ
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-db38bd907cb2540e85187dac42fad374d6e3d65feeeb69e065cb3c7bc003b2a03
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001064522500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3782
IngestDate Sun Jun 29 12:30:39 EDT 2025
Sat Nov 29 04:09:20 EST 2025
Wed Aug 27 02:56:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-db38bd907cb2540e85187dac42fad374d6e3d65feeeb69e065cb3c7bc003b2a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1013-4507
0000-0003-3597-2646
0000-0002-4280-1450
0000-0002-3378-1152
0000-0002-2773-4421
OpenAccessLink https://figshare.com/articles/journal_contribution/Edge-Enhanced_QoS_Aware_Compression_Learning_for_Sustainable_Data_Stream_Analytics/22236502
PQID 2862649721
PQPubID 4437206
PageCount 17
ParticipantIDs crossref_primary_10_1109_TSUSC_2023_3252039
proquest_journals_2862649721
ieee_primary_10064236
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on sustainable computing
PublicationTitleAbbrev TSUSC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref14
ref36
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
valtchev (ref40) 2020
liashchynskyi (ref37) 2019
said (ref45) 2017
xiao (ref41) 2017
theis (ref34) 2017
ref24
ref23
anguita (ref42) 2013
ref26
ref25
benmeziane (ref38) 2021
ref20
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
baldi (ref18) 2012
bank (ref31) 2020
References_xml – ident: ref30
  doi: 10.1016/j.bspc.2020.102225
– ident: ref25
  doi: 10.1145/3384419.3430898
– ident: ref12
  doi: 10.1109/OPNARC.1998.662039
– ident: ref24
  doi: 10.1109/TCBB.2022.3185395
– year: 2020
  ident: ref40
  article-title: Convolutional autoencoders for lossy light field compression
– ident: ref19
  doi: 10.1145/3274783.3274840
– ident: ref26
  doi: 10.1007/978-981-15-6044-6_4
– ident: ref28
  doi: 10.1109/ICCIS49240.2020.9257645
– ident: ref35
  doi: 10.1109/PCS.2018.8456308
– year: 2021
  ident: ref38
  article-title: A comprehensive survey on hardware-aware neural architecture search
– year: 2013
  ident: ref42
  article-title: A public domain dataset for human activity recognition using smartphones
  publication-title: Proc 21st Eur Symp Artif Neural Netw
– year: 2017
  ident: ref34
  article-title: Lossy image compression with compressive autoencoders
– ident: ref1
  doi: 10.1109/CFEC.2018.8358733
– ident: ref22
  doi: 10.1109/AVSS.2018.8639121
– ident: ref9
  doi: 10.1016/j.future.2019.08.012
– ident: ref11
  doi: 10.1109/HICSS.2005.32
– ident: ref6
  doi: 10.1109/TMM.2022.3168146
– ident: ref27
  doi: 10.1109/CANDAR.2017.13
– ident: ref20
  doi: 10.1109/ICCWorkshops49005.2020.9145068
– ident: ref2
  doi: 10.1109/JIOT.2016.2579198
– ident: ref16
  doi: 10.1109/INFOCOM.2018.8485905
– ident: ref7
  doi: 10.1109/BDCAT50828.2020.00018
– start-page: 1
  year: 2017
  ident: ref45
  article-title: Multimodal deep learning approach for joint EEG-EMG data compression and classification
  publication-title: Proc IEEE Wireless Commun Netw Conf
– year: 2017
  ident: ref41
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
– ident: ref10
  doi: 10.1002/spe.761
– ident: ref23
  doi: 10.1109/SECON52354.2021.9491600
– ident: ref36
  doi: 10.1109/SiPS50750.2020.9195249
– ident: ref3
  doi: 10.1109/MCOM.2018.1700332
– ident: ref14
  doi: 10.1109/IWCMC.2018.8450511
– ident: ref44
  doi: 10.1016/j.micpro.2021.104032
– ident: ref17
  doi: 10.1109/TCC.2020.2991748
– year: 2020
  ident: ref31
  article-title: Autoencoders
– ident: ref29
  doi: 10.1016/j.jnca.2020.102696
– ident: ref32
  doi: 10.1109/HPCC/SmartCity/DSS.2019.00180
– ident: ref8
  doi: 10.1007/3-540-44892-6_19
– ident: ref4
  doi: 10.1109/MNET.2018.1700202
– ident: ref5
  doi: 10.1109/TII.2017.2679740
– ident: ref13
  doi: 10.1109/CCECE.2019.8861806
– ident: ref15
  doi: 10.1109/CogMI48466.2019.00035
– ident: ref39
  doi: 10.1109/TBC.2011.2104671
– ident: ref21
  doi: 10.1109/JSAC.2021.3118346
– ident: ref33
  doi: 10.1109/JIOT.2018.2876695
– year: 2019
  ident: ref37
  article-title: Grid search, random search, genetic algorithm: A big comparison for NAS
– start-page: 37
  year: 2012
  ident: ref18
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: Proc ICML Workshop Unsupervised Transfer Learn
– ident: ref43
  doi: 10.1109/JIOT.2020.3027102
SSID ssj0001775921
Score 2.2313116
Snippet Existing Cloud systems involve large volumes of data streams being sent to a centralised data centre for monitoring, storage and analytics. However, migrating...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
Algorithms
Biological system modeling
Cloud Computing
Computational efficiency
Computational modeling
Computing costs
Data centers
Data compression
Data models
Data transfer (computers)
Data transmission
Deep Autoencoders
Edge Computing
Machine learning
Network latency
Quality of service
Quality of service architectures
Real-time analytics
Search methods
Task analysis
Transmission Optimisation
Title Edge-Enhanced QoS Aware Compression Learning for Sustainable Data Stream Analytics
URI https://ieeexplore.ieee.org/document/10064236
https://www.proquest.com/docview/2862649721
Volume 8
WOSCitedRecordID wos001064522500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2377-3790
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001775921
  issn: 2377-3782
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4I8eDFR8SIotmDN1PcPtjHkSDEgyFqIeHW7KvowUKg6N93Z1sCifHgrYd20367053Zme8bhO40JTmVCQ-0civYBRAk4HkiA-K2LlCqNox7ovAzG4_5bCZearK658JYa33xme3Cpc_lm4XewFGZs3Bwl2PaQA3GaEXW2h2oMNYTUbglxhDxMEmn6aAL_cG7cdSLCDQE39t8fDeVX79gv6-MTv75RqfouHYgcb-a8TN0YItz9DY0cxsMi3efz8evixT3v-XKYjD3qtK1wLWU6hw7PxWnO-IUfpSlxJCelp_Yi5SAdHMLTUfDyeApqLslBDoSYRkYFXNlXKyrlQv6iHWuFGdG6iTKpYlZYqiNDe3l7hsUFda5HlrFmint7FpFksQXqFksCnuJsM6pSkLFjQFBwFAKKNVnxo3JhRYmbKP7LYzZshLFyHwwQUTmQc8A9KwGvY1aANzenRVmbdTZQp_VhrPOIoiwEpAUuvrjsWt0BKNXJbMd1CxXG3uDDvVX-bFe3fo18QMOZLZN
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UTfTiR8SIovbgzQy7rVvXI0EIRiTqIOHW9GvowWFg6L9v241AYjx422Gfv_at7_W93-8BcCNjlMUcJ54UZgabAAJ5SYa5h8zSZZWqFUkcUXhAhsNkMqHPFVndcWG01q74TLfsocvlq5lc2q0yY-HWXQ7jbbATYRygkq613lIhJKKBv6LGIHo3Ssdpp2U7hLfCIAqQbQm-sfy4fiq_fsJuZekd_vOdjsBB5ULCdjnmx2BL5yfgtaum2uvmby6jD19mKWx_87mG1uDLWtccVmKqU2g8VZiuqVPwnhcc2gQ1_4BOpsSKN9fBuNcddfpe1S_BkwH1C0-JMBHKRLtSmLAPaeNMJURxiYOMq5BgFetQxVFmvkHEVBvnQ4pQEiGNZYuAo_AU1PJZrs8AlFkssC8SpawkoM-pLdYnytwzoZIqvwFuVzCyz1IWg7lwAlHmQGcWdFaB3gB1C9zGmSVmDdBcQc8q01mwwMZY2IoKnf9x2TXY64-eBmzwMHy8APv2SWUBbRPUivlSX4Jd-VW8L-ZXbn78ALUpuZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge-Enhanced+QoS+Aware+Compression+Learning+for+Sustainable+Data+Stream+Analytics&rft.jtitle=IEEE+transactions+on+sustainable+computing&rft.au=Amaizu%2C+Maryleen+Uluaku&rft.au=Ali%2C+Muhammad&rft.au=Anjum%2C+Ashiq&rft.au=Liu%2C+Lu&rft.date=2023-07-01&rft.pub=IEEE&rft.eissn=2377-3790&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FTSUSC.2023.3252039&rft.externalDocID=10064236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3782&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3782&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3782&client=summon