Multi-Agent Reinforcement Learning Based 3D Trajectory Design in Aerial-Terrestrial Wireless Caching Networks

This paper investigates a dynamic 3D trajectory design of multiple cache-enabled unmanned aerial vehicles (UAVs) in a wireless device-to-device (D2D) caching network with the goal of maximizing the long-term network throughput. By storing popular content at the nearby mobile user devices, D2D cachin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on vehicular technology Ročník 70; číslo 8; s. 8201 - 8215
Hlavní autori: Chen, Yu-Jia, Liao, Kai-Min, Ku, Meng-Lin, Tso, Fung Po, Chen, Guan-Yi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9545, 1939-9359
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper investigates a dynamic 3D trajectory design of multiple cache-enabled unmanned aerial vehicles (UAVs) in a wireless device-to-device (D2D) caching network with the goal of maximizing the long-term network throughput. By storing popular content at the nearby mobile user devices, D2D caching is an efficient method to improve network throughput and alleviate backhaul burden. With the attractive features of high mobility and flexible deployment, UAVs have recently attracted significant attention as cache-enabled flying base stations. The use of cache-enabled UAVs opens up the possibility of tracking the mobility pattern of the corresponding users and serving them under limited cache storage capacity. However, it is challenging to determine the optimal UAV trajectory due to the dynamic environment with frequently changing network topology and the coexistence of aerial and terrestrial caching nodes. In response, we propose a novel multi-agent reinforcement learning based framework to determine the optimal 3D trajectory of each UAV in a distributed manner without a central coordinator. In the proposed method, multiple UAVs can cooperatively make flight decisions by sharing the gained experiences within a certain proximity to each other. Simulation results reveal that our algorithm outperforms the traditional single- and multi-agent Q-learning algorithms. This work confirms the feasibility and effectiveness of cache-enabled UAVs which serve as an important complement to terrestrial D2D caching nodes.
AbstractList This paper investigates a dynamic 3D trajectory design of multiple cache-enabled unmanned aerial vehicles (UAVs) in a wireless device-to-device (D2D) caching network with the goal of maximizing the long-term network throughput. By storing popular content at the nearby mobile user devices, D2D caching is an efficient method to improve network throughput and alleviate backhaul burden. With the attractive features of high mobility and flexible deployment, UAVs have recently attracted significant attention as cache-enabled flying base stations. The use of cache-enabled UAVs opens up the possibility of tracking the mobility pattern of the corresponding users and serving them under limited cache storage capacity. However, it is challenging to determine the optimal UAV trajectory due to the dynamic environment with frequently changing network topology and the coexistence of aerial and terrestrial caching nodes. In response, we propose a novel multi-agent reinforcement learning based framework to determine the optimal 3D trajectory of each UAV in a distributed manner without a central coordinator. In the proposed method, multiple UAVs can cooperatively make flight decisions by sharing the gained experiences within a certain proximity to each other. Simulation results reveal that our algorithm outperforms the traditional single- and multi-agent Q-learning algorithms. This work confirms the feasibility and effectiveness of cache-enabled UAVs which serve as an important complement to terrestrial D2D caching nodes.
Author Liao, Kai-Min
Chen, Guan-Yi
Chen, Yu-Jia
Tso, Fung Po
Ku, Meng-Lin
Author_xml – sequence: 1
  givenname: Yu-Jia
  orcidid: 0000-0001-7563-4073
  surname: Chen
  fullname: Chen, Yu-Jia
  email: yjchen@ce.ncu.edu.tw
  organization: Department of Communication Engineering, National Central University, Taoyuan City, Taiwan
– sequence: 2
  givenname: Kai-Min
  surname: Liao
  fullname: Liao, Kai-Min
  email: lkiamin@gmail.com
  organization: Department of Communication Engineering, National Central University, Taoyuan City, Taiwan
– sequence: 3
  givenname: Meng-Lin
  orcidid: 0000-0002-2777-9355
  surname: Ku
  fullname: Ku, Meng-Lin
  email: mlku@ce.ncu.edu.tw
  organization: Department of Communication Engineering, National Central University, Taoyuan City, Taiwan
– sequence: 4
  givenname: Fung Po
  surname: Tso
  fullname: Tso, Fung Po
  email: p.tso@lboro.ac.uk
  organization: Department of Computer Science, Loughborough University, U.K
– sequence: 5
  givenname: Guan-Yi
  surname: Chen
  fullname: Chen, Guan-Yi
  email: billchenyi0531@gmail.com
  organization: Department of Communication Engineering, National Central University, Taoyuan City, Taiwan
BookMark eNp9kM1LAzEQxYNUsK3eBS8Bz1vzsdltjrX1C6qCrHpc0uxsTd1ma5Ii_e_N0uLBg6eZgfd7M_MGqGdbCwidUzKilMir4q0YMcLoiBOZspwfoT6VXCaSC9lDfULoOJEiFSdo4P0qjmkqaR-tH7dNMMlkCTbgFzC2bp2GdTfNQTlr7BJfKw8V5jNcOLUCHVq3wzPwZmmxsXgCzqgmKcA58KHr8btx0ID3eKr0R-fwBOG7dZ_-FB3XqvFwdqhD9Hp7U0zvk_nz3cN0Mk80kzQklapICrkG4DXRoChJq5rncgw1YWqRKUrZgkiWapFJOY5_EgG6EqwW4yio-BBd7n03rv3axrPKVbt1Nq4smcgY7wgWVWSv0q713kFdbpxZK7crKSm7UMsYatmFWh5CjUj2B9EmqGBaG5wyzX_gxR40APC7R6Y5J5TxHxa2huE
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_LCOMM_2022_3166961
crossref_primary_10_1016_j_chaos_2023_113777
crossref_primary_10_1109_JIOT_2023_3300011
crossref_primary_10_1016_j_chb_2024_108393
crossref_primary_10_1109_TVT_2023_3336291
crossref_primary_10_1109_ACCESS_2024_3515799
crossref_primary_10_1109_TVT_2024_3430233
crossref_primary_10_1109_JSYST_2024_3442958
crossref_primary_10_1145_3763795
crossref_primary_10_1016_j_neucom_2024_128668
crossref_primary_10_1109_JMASS_2024_3420893
crossref_primary_10_1109_TSMC_2025_3539656
crossref_primary_10_1109_JIOT_2024_3360444
crossref_primary_10_3390_electronics13224401
crossref_primary_10_1109_JIOT_2023_3341307
crossref_primary_10_3390_app122412822
crossref_primary_10_1109_JIOT_2024_3354326
crossref_primary_10_1109_TVT_2024_3510621
crossref_primary_10_1007_s12083_024_01702_1
crossref_primary_10_1016_j_jnca_2022_103439
crossref_primary_10_1109_TSUSC_2024_3444949
crossref_primary_10_1109_JIOT_2024_3511253
crossref_primary_10_1109_TVT_2024_3357086
crossref_primary_10_1016_j_cja_2024_103368
crossref_primary_10_1109_TCOMM_2025_3534587
crossref_primary_10_1109_ACCESS_2022_3210337
crossref_primary_10_1109_ACCESS_2021_3112963
crossref_primary_10_1109_JIOT_2023_3320796
crossref_primary_10_1109_COMST_2023_3323344
crossref_primary_10_1109_TVT_2024_3422499
Cites_doi 10.1109/TVT.2019.2922849
10.1109/TWC.2019.2935201
10.1109/TWC.2017.2717819
10.1109/ICC.2015.7248843
10.1109/TVT.2020.2973294
10.1109/TCCN.2019.2907520
10.1109/ISCC47284.2019.8969672
10.1109/TAC.2019.2901829
10.1109/TWC.2018.2790401
10.1109/LCOMM.2016.2628032
10.1109/JSAC.2019.2947929
10.1109/TCOMM.2020.2986289
10.1109/TVT.2019.2961178
10.1109/TCOMM.2019.2895088
10.1109/TVT.2020.2968343
10.1109/TCOMM.2018.2792014
10.1109/ACCESS.2019.2900195
10.1109/GLOBECOM38437.2019.9013432
10.1109/TNSE.2019.2921482
10.1109/TCCN.2019.2946864
10.1109/MWC.2018.1700215
10.1109/ICC.2016.7511410
10.1109/TII.2019.2922039
10.1109/ISCC47284.2019.8969724
10.1109/TVT.2017.2675451
10.1109/TGCN.2017.2767203
10.1109/TVT.2020.3023733
10.1109/JSAC.2017.2680898
10.1109/TCOMM.2018.2867465
10.1109/TWC.2019.2892131
10.1109/TCOMM.2019.2917440
10.1109/TVT.2019.2934027
10.1109/TVT.2019.2920284
10.1109/ACCESS.2020.2971772
10.1109/TCOMM.2020.2973629
10.1007/978-3-030-33384-3
10.1109/LCOMM.2019.2929131
10.1109/TWC.2017.2789293
10.1109/TWC.2019.2891629
10.1145/2070942.2070952
10.1109/TCOMM.2011.100411.100541
10.1109/TCOMM.2019.2907944
10.1109/TVT.2019.2929839
10.1109/TVT.2017.2724547
10.1109/COMST.2019.2902862
10.1109/TWC.2019.2902559
10.1109/TVT.2018.2857211
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2021.3094273
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 8215
ExternalDocumentID 10_1109_TVT_2021_3094273
9473012
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 108-2218-E-008 -016 -MY2
  funderid: 10.13039/501100004663
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-dad04e7cee3f0cea104df3798ef02ab6a112b0924c5699819305ecd52f5802ad3
IEDL.DBID RIE
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685892200071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 10:18:08 EDT 2025
Tue Nov 18 22:18:16 EST 2025
Sat Nov 29 02:58:57 EST 2025
Wed Aug 27 02:25:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-dad04e7cee3f0cea104df3798ef02ab6a112b0924c5699819305ecd52f5802ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7563-4073
0000-0002-2777-9355
PQID 2562319302
PQPubID 85454
PageCount 15
ParticipantIDs crossref_primary_10_1109_TVT_2021_3094273
crossref_citationtrail_10_1109_TVT_2021_3094273
ieee_primary_9473012
proquest_journals_2562319302
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
fulda (ref43) 2007
ref11
ref10
ref17
ref16
ref18
(ref19) 2019
ref50
zhang (ref44) 0
ref46
ref45
ref48
ref47
ref42
ref41
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
zhang (ref27) 2020
References_xml – ident: ref22
  doi: 10.1109/TVT.2019.2922849
– ident: ref23
  doi: 10.1109/TWC.2019.2935201
– ident: ref37
  doi: 10.1109/TWC.2017.2717819
– ident: ref38
  doi: 10.1109/ICC.2015.7248843
– ident: ref41
  doi: 10.1109/TVT.2020.2973294
– ident: ref42
  doi: 10.1109/TCCN.2019.2907520
– ident: ref2
  doi: 10.1109/ISCC47284.2019.8969672
– ident: ref45
  doi: 10.1109/TAC.2019.2901829
– ident: ref14
  doi: 10.1109/TWC.2018.2790401
– year: 2019
  ident: ref19
  article-title: Enhancement for unmanned aerial vehicles
  publication-title: 3GPP
– ident: ref35
  doi: 10.1109/LCOMM.2016.2628032
– ident: ref33
  doi: 10.1109/JSAC.2019.2947929
– ident: ref25
  doi: 10.1109/TCOMM.2020.2986289
– ident: ref31
  doi: 10.1109/TVT.2019.2961178
– ident: ref9
  doi: 10.1109/TCOMM.2019.2895088
– ident: ref17
  doi: 10.1109/TVT.2020.2968343
– ident: ref10
  doi: 10.1109/TCOMM.2018.2792014
– ident: ref49
  doi: 10.1109/ACCESS.2019.2900195
– ident: ref20
  doi: 10.1109/GLOBECOM38437.2019.9013432
– ident: ref30
  doi: 10.1109/TNSE.2019.2921482
– ident: ref21
  doi: 10.1109/TCCN.2019.2946864
– ident: ref1
  doi: 10.1109/MWC.2018.1700215
– start-page: 10
  year: 0
  ident: ref44
  article-title: Fully decentralized multi-agent reinforcement learning with networked agents
  publication-title: Proc Int Conf Mach Learn
– ident: ref39
  doi: 10.1109/ICC.2016.7511410
– ident: ref8
  doi: 10.1109/TII.2019.2922039
– ident: ref47
  doi: 10.1109/ISCC47284.2019.8969724
– ident: ref34
  doi: 10.1109/TVT.2017.2675451
– ident: ref11
  doi: 10.1109/TGCN.2017.2767203
– ident: ref24
  doi: 10.1109/TVT.2020.3023733
– ident: ref7
  doi: 10.1109/JSAC.2017.2680898
– ident: ref48
  doi: 10.1109/TCOMM.2018.2867465
– ident: ref15
  doi: 10.1109/TWC.2019.2892131
– ident: ref6
  doi: 10.1109/TCOMM.2019.2917440
– ident: ref12
  doi: 10.1109/TVT.2019.2934027
– ident: ref26
  doi: 10.1109/TVT.2019.2920284
– ident: ref3
  doi: 10.1109/ACCESS.2020.2971772
– start-page: 780
  year: 2007
  ident: ref43
  article-title: Predicting and preventing coordination problems in cooperative Q-learning systems
  publication-title: Proc Int Joint Conf Artif Intell
– ident: ref28
  doi: 10.1109/TCOMM.2020.2973629
– year: 2020
  ident: ref27
  article-title: Multi-agent reinforcement learning: A selective overview of theories and algorithms
  publication-title: Studies Syst Decision Control Handbook RL Control
  doi: 10.1007/978-3-030-33384-3
– ident: ref40
  doi: 10.1109/LCOMM.2019.2929131
– ident: ref16
  doi: 10.1109/TWC.2017.2789293
– ident: ref5
  doi: 10.1109/TWC.2019.2891629
– ident: ref46
  doi: 10.1145/2070942.2070952
– ident: ref29
  doi: 10.1109/TCOMM.2011.100411.100541
– ident: ref13
  doi: 10.1109/TCOMM.2019.2907944
– ident: ref36
  doi: 10.1109/TVT.2019.2929839
– ident: ref50
  doi: 10.1109/TVT.2017.2724547
– ident: ref4
  doi: 10.1109/COMST.2019.2902862
– ident: ref32
  doi: 10.1109/TWC.2019.2902559
– ident: ref18
  doi: 10.1109/TVT.2018.2857211
SSID ssj0014491
Score 2.538472
Snippet This paper investigates a dynamic 3D trajectory design of multiple cache-enabled unmanned aerial vehicles (UAVs) in a wireless device-to-device (D2D) caching...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8201
SubjectTerms Algorithms
Cache storage
Caching
Device-to-device communication
Electronic devices
Machine learning
multi-agent reinforcement learning
Multiagent systems
Network topologies
Nodes
Storage capacity
Throughput
Trajectory
trajectory design
Trajectory optimization
Unmanned aerial vehicles
Unmanned aerial vehicles (UAVs)
wireless caching
Wireless communication
Wireless networks
Wireless sensor networks
Title Multi-Agent Reinforcement Learning Based 3D Trajectory Design in Aerial-Terrestrial Wireless Caching Networks
URI https://ieeexplore.ieee.org/document/9473012
https://www.proquest.com/docview/2562319302
Volume 70
WOSCitedRecordID wos000685892200071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxQADr4IoFOSBBQm3rvNwMpZCxVQhFFC3yLUvqKikqA8k_j1nJ41AICQ2D3aU5LN9d_Z39xFyoX0jrEAaCzSGq76nPYZGT7Aw7gYgxwYtbiE2IYfDaDSK72vkqsqFAQBHPoO2bbq7fDPTK3tU1ol9Ox9xw92QUha5WtWNge-X6nhdXMDoFqyvJHncSZ4SDARFt-1hLCOk980EOU2VHxuxsy6D3f-91x7ZKb1I2itg3yc1yA_I9pfagg3y6lJrWc-mTtEHcAVStTsLpGVN1Wd6jSbMUO-GosV6ccf3H_TGUTroJKc9NzlZAk6_w7ap5cpOcW-k_YKDSYcFi3xxSB4Ht0n_jpXaCkyLuLtkRhnug0QT6WVcg8KozGSejCPIuFDjUKEfNuYYnOkgxIgM3TwegDaByIIIOxjviNTzWQ7HhAoZK51B5oeWLScjpSL0AzPQgS94pkSTdNa_O9Vl4XGrfzFNXQDC4xQBSi1AaQlQk1xWI96Koht_9G1YQKp-JRZN0lojmparcpEK6-zZTxEnv486JVv22QXBr0Xqy_kKzsimfl9OFvNzN-E-ARQ90qY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD4MFdQHb1OcTs2DL4Ld2jS9Pc7NMXEWkSp7K12SymR2sovgv_ck7YqiCL7lIaGXL8k5J_nO-QDOORNUCaQZDsdwldncNtDoUcMNLEd6Q4EWNxeb8MLQHwyC-wpclrkwUkpNPpMN1dR3-WLCF-qorBkwNR9xw111GKNWnq1V3hkwVujjWbiE0TFYXkqaQTN6ijAUpFbDxmiGevY3I6RVVX5sxdq-dLf_92Y7sFX4kaSVA78LFZntweaX6oJVeNXJtUZLJU-RB6lLpHJ9GkiKqqrP5AqNmCB2h6DNetEH-B-ko0kdZJSRlp6eRiS1godqE8WWHePuSNo5C5OEOY98tg-P3euo3TMKdQWD08CaGyIRJpMeGkk7NblMMC4Tqe0FvkxNmgzdBD2xoYnhGXdcjMnQ0TMdyYVDU8fHDsI-gJVskslDINQLEp7KlLmKL-f5SeKjJ5hK7jBqpgmtQXP5u2NelB5XChjjWIcgZhAjQLECKC4AqsFFOeItL7vxR9-qAqTsV2BRg_oS0bhYl7OYKndPfQo9-n3UGaz3ort-3L8Jb49hQz0np_vVYWU-XcgTWOPv89Fseqon3ycv99Xt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+Reinforcement+Learning+Based+3D+Trajectory+Design+in+Aerial-Terrestrial+Wireless+Caching+Networks&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Yu-Jia%2C+Chen&rft.au=Kai-Min+Liao&rft.au=Meng-Lin%2C+Ku&rft.au=Tso%2C+Fung+Po&rft.date=2021-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=70&rft.issue=8&rft.spage=8201&rft_id=info:doi/10.1109%2FTVT.2021.3094273&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon