Multi-Agent Reinforcement Learning Based 3D Trajectory Design in Aerial-Terrestrial Wireless Caching Networks
This paper investigates a dynamic 3D trajectory design of multiple cache-enabled unmanned aerial vehicles (UAVs) in a wireless device-to-device (D2D) caching network with the goal of maximizing the long-term network throughput. By storing popular content at the nearby mobile user devices, D2D cachin...
Saved in:
| Published in: | IEEE transactions on vehicular technology Vol. 70; no. 8; pp. 8201 - 8215 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9545, 1939-9359 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper investigates a dynamic 3D trajectory design of multiple cache-enabled unmanned aerial vehicles (UAVs) in a wireless device-to-device (D2D) caching network with the goal of maximizing the long-term network throughput. By storing popular content at the nearby mobile user devices, D2D caching is an efficient method to improve network throughput and alleviate backhaul burden. With the attractive features of high mobility and flexible deployment, UAVs have recently attracted significant attention as cache-enabled flying base stations. The use of cache-enabled UAVs opens up the possibility of tracking the mobility pattern of the corresponding users and serving them under limited cache storage capacity. However, it is challenging to determine the optimal UAV trajectory due to the dynamic environment with frequently changing network topology and the coexistence of aerial and terrestrial caching nodes. In response, we propose a novel multi-agent reinforcement learning based framework to determine the optimal 3D trajectory of each UAV in a distributed manner without a central coordinator. In the proposed method, multiple UAVs can cooperatively make flight decisions by sharing the gained experiences within a certain proximity to each other. Simulation results reveal that our algorithm outperforms the traditional single- and multi-agent Q-learning algorithms. This work confirms the feasibility and effectiveness of cache-enabled UAVs which serve as an important complement to terrestrial D2D caching nodes. |
|---|---|
| AbstractList | This paper investigates a dynamic 3D trajectory design of multiple cache-enabled unmanned aerial vehicles (UAVs) in a wireless device-to-device (D2D) caching network with the goal of maximizing the long-term network throughput. By storing popular content at the nearby mobile user devices, D2D caching is an efficient method to improve network throughput and alleviate backhaul burden. With the attractive features of high mobility and flexible deployment, UAVs have recently attracted significant attention as cache-enabled flying base stations. The use of cache-enabled UAVs opens up the possibility of tracking the mobility pattern of the corresponding users and serving them under limited cache storage capacity. However, it is challenging to determine the optimal UAV trajectory due to the dynamic environment with frequently changing network topology and the coexistence of aerial and terrestrial caching nodes. In response, we propose a novel multi-agent reinforcement learning based framework to determine the optimal 3D trajectory of each UAV in a distributed manner without a central coordinator. In the proposed method, multiple UAVs can cooperatively make flight decisions by sharing the gained experiences within a certain proximity to each other. Simulation results reveal that our algorithm outperforms the traditional single- and multi-agent Q-learning algorithms. This work confirms the feasibility and effectiveness of cache-enabled UAVs which serve as an important complement to terrestrial D2D caching nodes. |
| Author | Liao, Kai-Min Chen, Guan-Yi Chen, Yu-Jia Tso, Fung Po Ku, Meng-Lin |
| Author_xml | – sequence: 1 givenname: Yu-Jia orcidid: 0000-0001-7563-4073 surname: Chen fullname: Chen, Yu-Jia email: yjchen@ce.ncu.edu.tw organization: Department of Communication Engineering, National Central University, Taoyuan City, Taiwan – sequence: 2 givenname: Kai-Min surname: Liao fullname: Liao, Kai-Min email: lkiamin@gmail.com organization: Department of Communication Engineering, National Central University, Taoyuan City, Taiwan – sequence: 3 givenname: Meng-Lin orcidid: 0000-0002-2777-9355 surname: Ku fullname: Ku, Meng-Lin email: mlku@ce.ncu.edu.tw organization: Department of Communication Engineering, National Central University, Taoyuan City, Taiwan – sequence: 4 givenname: Fung Po surname: Tso fullname: Tso, Fung Po email: p.tso@lboro.ac.uk organization: Department of Computer Science, Loughborough University, U.K – sequence: 5 givenname: Guan-Yi surname: Chen fullname: Chen, Guan-Yi email: billchenyi0531@gmail.com organization: Department of Communication Engineering, National Central University, Taoyuan City, Taiwan |
| BookMark | eNp9kM1LAzEQxYNUsK3eBS8Bz1vzsdltjrX1C6qCrHpc0uxsTd1ma5Ii_e_N0uLBg6eZgfd7M_MGqGdbCwidUzKilMir4q0YMcLoiBOZspwfoT6VXCaSC9lDfULoOJEiFSdo4P0qjmkqaR-tH7dNMMlkCTbgFzC2bp2GdTfNQTlr7BJfKw8V5jNcOLUCHVq3wzPwZmmxsXgCzqgmKcA58KHr8btx0ID3eKr0R-fwBOG7dZ_-FB3XqvFwdqhD9Hp7U0zvk_nz3cN0Mk80kzQklapICrkG4DXRoChJq5rncgw1YWqRKUrZgkiWapFJOY5_EgG6EqwW4yio-BBd7n03rv3axrPKVbt1Nq4smcgY7wgWVWSv0q713kFdbpxZK7crKSm7UMsYatmFWh5CjUj2B9EmqGBaG5wyzX_gxR40APC7R6Y5J5TxHxa2huE |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_1109_LCOMM_2022_3166961 crossref_primary_10_1016_j_chaos_2023_113777 crossref_primary_10_1109_JIOT_2023_3300011 crossref_primary_10_1016_j_chb_2024_108393 crossref_primary_10_1109_TVT_2023_3336291 crossref_primary_10_1109_ACCESS_2024_3515799 crossref_primary_10_1109_TVT_2024_3430233 crossref_primary_10_1109_JSYST_2024_3442958 crossref_primary_10_1145_3763795 crossref_primary_10_1016_j_neucom_2024_128668 crossref_primary_10_1109_JMASS_2024_3420893 crossref_primary_10_1109_TSMC_2025_3539656 crossref_primary_10_1109_JIOT_2024_3360444 crossref_primary_10_3390_electronics13224401 crossref_primary_10_1109_JIOT_2023_3341307 crossref_primary_10_3390_app122412822 crossref_primary_10_1109_JIOT_2024_3354326 crossref_primary_10_1109_TVT_2024_3510621 crossref_primary_10_1007_s12083_024_01702_1 crossref_primary_10_1016_j_jnca_2022_103439 crossref_primary_10_1109_TSUSC_2024_3444949 crossref_primary_10_1109_JIOT_2024_3511253 crossref_primary_10_1109_TVT_2024_3357086 crossref_primary_10_1016_j_cja_2024_103368 crossref_primary_10_1109_TCOMM_2025_3534587 crossref_primary_10_1109_ACCESS_2022_3210337 crossref_primary_10_1109_ACCESS_2021_3112963 crossref_primary_10_1109_JIOT_2023_3320796 crossref_primary_10_1109_COMST_2023_3323344 crossref_primary_10_1109_TVT_2024_3422499 |
| Cites_doi | 10.1109/TVT.2019.2922849 10.1109/TWC.2019.2935201 10.1109/TWC.2017.2717819 10.1109/ICC.2015.7248843 10.1109/TVT.2020.2973294 10.1109/TCCN.2019.2907520 10.1109/ISCC47284.2019.8969672 10.1109/TAC.2019.2901829 10.1109/TWC.2018.2790401 10.1109/LCOMM.2016.2628032 10.1109/JSAC.2019.2947929 10.1109/TCOMM.2020.2986289 10.1109/TVT.2019.2961178 10.1109/TCOMM.2019.2895088 10.1109/TVT.2020.2968343 10.1109/TCOMM.2018.2792014 10.1109/ACCESS.2019.2900195 10.1109/GLOBECOM38437.2019.9013432 10.1109/TNSE.2019.2921482 10.1109/TCCN.2019.2946864 10.1109/MWC.2018.1700215 10.1109/ICC.2016.7511410 10.1109/TII.2019.2922039 10.1109/ISCC47284.2019.8969724 10.1109/TVT.2017.2675451 10.1109/TGCN.2017.2767203 10.1109/TVT.2020.3023733 10.1109/JSAC.2017.2680898 10.1109/TCOMM.2018.2867465 10.1109/TWC.2019.2892131 10.1109/TCOMM.2019.2917440 10.1109/TVT.2019.2934027 10.1109/TVT.2019.2920284 10.1109/ACCESS.2020.2971772 10.1109/TCOMM.2020.2973629 10.1007/978-3-030-33384-3 10.1109/LCOMM.2019.2929131 10.1109/TWC.2017.2789293 10.1109/TWC.2019.2891629 10.1145/2070942.2070952 10.1109/TCOMM.2011.100411.100541 10.1109/TCOMM.2019.2907944 10.1109/TVT.2019.2929839 10.1109/TVT.2017.2724547 10.1109/COMST.2019.2902862 10.1109/TWC.2019.2902559 10.1109/TVT.2018.2857211 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2021.3094273 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 8215 |
| ExternalDocumentID | 10_1109_TVT_2021_3094273 9473012 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 108-2218-E-008 -016 -MY2 funderid: 10.13039/501100004663 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c291t-dad04e7cee3f0cea104df3798ef02ab6a112b0924c5699819305ecd52f5802ad3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685892200071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 10:18:08 EDT 2025 Tue Nov 18 22:18:16 EST 2025 Sat Nov 29 02:58:57 EST 2025 Wed Aug 27 02:25:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-dad04e7cee3f0cea104df3798ef02ab6a112b0924c5699819305ecd52f5802ad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7563-4073 0000-0002-2777-9355 |
| PQID | 2562319302 |
| PQPubID | 85454 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TVT_2021_3094273 crossref_citationtrail_10_1109_TVT_2021_3094273 ieee_primary_9473012 proquest_journals_2562319302 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 fulda (ref43) 2007 ref11 ref10 ref17 ref16 ref18 (ref19) 2019 ref50 zhang (ref44) 0 ref46 ref45 ref48 ref47 ref42 ref41 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 zhang (ref27) 2020 |
| References_xml | – ident: ref22 doi: 10.1109/TVT.2019.2922849 – ident: ref23 doi: 10.1109/TWC.2019.2935201 – ident: ref37 doi: 10.1109/TWC.2017.2717819 – ident: ref38 doi: 10.1109/ICC.2015.7248843 – ident: ref41 doi: 10.1109/TVT.2020.2973294 – ident: ref42 doi: 10.1109/TCCN.2019.2907520 – ident: ref2 doi: 10.1109/ISCC47284.2019.8969672 – ident: ref45 doi: 10.1109/TAC.2019.2901829 – ident: ref14 doi: 10.1109/TWC.2018.2790401 – year: 2019 ident: ref19 article-title: Enhancement for unmanned aerial vehicles publication-title: 3GPP – ident: ref35 doi: 10.1109/LCOMM.2016.2628032 – ident: ref33 doi: 10.1109/JSAC.2019.2947929 – ident: ref25 doi: 10.1109/TCOMM.2020.2986289 – ident: ref31 doi: 10.1109/TVT.2019.2961178 – ident: ref9 doi: 10.1109/TCOMM.2019.2895088 – ident: ref17 doi: 10.1109/TVT.2020.2968343 – ident: ref10 doi: 10.1109/TCOMM.2018.2792014 – ident: ref49 doi: 10.1109/ACCESS.2019.2900195 – ident: ref20 doi: 10.1109/GLOBECOM38437.2019.9013432 – ident: ref30 doi: 10.1109/TNSE.2019.2921482 – ident: ref21 doi: 10.1109/TCCN.2019.2946864 – ident: ref1 doi: 10.1109/MWC.2018.1700215 – start-page: 10 year: 0 ident: ref44 article-title: Fully decentralized multi-agent reinforcement learning with networked agents publication-title: Proc Int Conf Mach Learn – ident: ref39 doi: 10.1109/ICC.2016.7511410 – ident: ref8 doi: 10.1109/TII.2019.2922039 – ident: ref47 doi: 10.1109/ISCC47284.2019.8969724 – ident: ref34 doi: 10.1109/TVT.2017.2675451 – ident: ref11 doi: 10.1109/TGCN.2017.2767203 – ident: ref24 doi: 10.1109/TVT.2020.3023733 – ident: ref7 doi: 10.1109/JSAC.2017.2680898 – ident: ref48 doi: 10.1109/TCOMM.2018.2867465 – ident: ref15 doi: 10.1109/TWC.2019.2892131 – ident: ref6 doi: 10.1109/TCOMM.2019.2917440 – ident: ref12 doi: 10.1109/TVT.2019.2934027 – ident: ref26 doi: 10.1109/TVT.2019.2920284 – ident: ref3 doi: 10.1109/ACCESS.2020.2971772 – start-page: 780 year: 2007 ident: ref43 article-title: Predicting and preventing coordination problems in cooperative Q-learning systems publication-title: Proc Int Joint Conf Artif Intell – ident: ref28 doi: 10.1109/TCOMM.2020.2973629 – year: 2020 ident: ref27 article-title: Multi-agent reinforcement learning: A selective overview of theories and algorithms publication-title: Studies Syst Decision Control Handbook RL Control doi: 10.1007/978-3-030-33384-3 – ident: ref40 doi: 10.1109/LCOMM.2019.2929131 – ident: ref16 doi: 10.1109/TWC.2017.2789293 – ident: ref5 doi: 10.1109/TWC.2019.2891629 – ident: ref46 doi: 10.1145/2070942.2070952 – ident: ref29 doi: 10.1109/TCOMM.2011.100411.100541 – ident: ref13 doi: 10.1109/TCOMM.2019.2907944 – ident: ref36 doi: 10.1109/TVT.2019.2929839 – ident: ref50 doi: 10.1109/TVT.2017.2724547 – ident: ref4 doi: 10.1109/COMST.2019.2902862 – ident: ref32 doi: 10.1109/TWC.2019.2902559 – ident: ref18 doi: 10.1109/TVT.2018.2857211 |
| SSID | ssj0014491 |
| Score | 2.538472 |
| Snippet | This paper investigates a dynamic 3D trajectory design of multiple cache-enabled unmanned aerial vehicles (UAVs) in a wireless device-to-device (D2D) caching... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8201 |
| SubjectTerms | Algorithms Cache storage Caching Device-to-device communication Electronic devices Machine learning multi-agent reinforcement learning Multiagent systems Network topologies Nodes Storage capacity Throughput Trajectory trajectory design Trajectory optimization Unmanned aerial vehicles Unmanned aerial vehicles (UAVs) wireless caching Wireless communication Wireless networks Wireless sensor networks |
| Title | Multi-Agent Reinforcement Learning Based 3D Trajectory Design in Aerial-Terrestrial Wireless Caching Networks |
| URI | https://ieeexplore.ieee.org/document/9473012 https://www.proquest.com/docview/2562319302 |
| Volume | 70 |
| WOSCitedRecordID | wos000685892200071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA5zeNCDX1OcTsnBi2C2Nmmb5jinw9MQqbJbSZNUJrOTfQj-e9-kXVEUwVsOSWn7JHmfJ3k_ELqQIWgAmuVE6YCDQGGKxEoLwmQQqZybUAjpik3w0Sgej8V9A13VsTDGGOd8Zrq26e7y9Uyt7FFZTwR2PsKGu8E5L2O16huDIKiq4_mwgIEWrK8kPdFLnhIQgtTvMtAylLNvJsjVVPmxETvrMtz933vtoZ2KReJ-Cfs-apjiAG1_yS3YQq8utJb0begUfjAuQapyZ4G4yqn6jK_BhGnMbjBYrBd3fP-Bb5xLB54UuO8mJ0mMq99h29j6yk5hb8SD0gcTj0ov8sUhehzeJoM7UtVWIIoKf0m01F5gOJhIlnvKSFBlOmdcxCb3qMwiCTws80CcqTACRQY0zwuN0iHNwxg6aHaEmsWsMMcIi1z7GliCNgLIVSbiSEY892JJDaMqpm3UW__uVFWJx239i2nqBIgnUgAotQClFUBtdFmPeCuTbvzRt2UBqftVWLRRZ41oWq3KRUot2bOfQk9-H3WKtuyzSwe_Dmou5ytzhjbV-3KymJ-7CfcJStHTsQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH6ICurBrYp1zcGL4LQzyWw51tZSsRaRUXob0iQjlToVWwX_vS-ZaVEUwVsOCbN8Sd73JW8BOBUBagA6yByp_AgFCpNOLBV3mPBDmUU64FzYYhNRrxf3-_x2Ac7nsTBaa-t8pmumae_y1Vi-maOyOvfNfMQNdynwfeoV0VrzOwPfL-vjebiEkRjMLiVdXk8eEpSC1KsxVDM0Yt-MkK2q8mMrtvalvfG_N9uE9ZJHkkYB_BYs6Hwb1r5kF6zAsw2udRomeIrcaZsiVdrTQFJmVX0kF2jEFGEtgjbryR7gf5CWdeogw5w07PR0Em0reJg2Md6yI9wdSbPwwiS9wo98sgP37cuk2XHK6gqOpNybOkoo19cRGkmWuVIL1GUqYxGPdeZSMQgFMrGBi_JMBiFqMiR6bqClCmgWxNhBsV1YzMe53gPCM-Up5AlKc6RXAx6HIowyNxZUMypjWoX67Henskw9bipgjFIrQVyeIkCpASgtAarC2XzES5F244--FQPIvF-JRRUOZ4im5bqcpNTQPfMpdP_3USew0kluumn3qnd9AKvmOYW73yEsTl_f9BEsy_fpcPJ6bCffJ3V11vg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+Reinforcement+Learning+Based+3D+Trajectory+Design+in+Aerial-Terrestrial+Wireless+Caching+Networks&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Chen%2C+Yu-Jia&rft.au=Liao%2C+Kai-Min&rft.au=Ku%2C+Meng-Lin&rft.au=Tso%2C+Fung+Po&rft.date=2021-08-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=70&rft.issue=8&rft.spage=8201&rft.epage=8215&rft_id=info:doi/10.1109%2FTVT.2021.3094273&rft.externalDocID=9473012 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |