Deep Learning Based Auction-Driven Beamforming for Wireless Information and Power Transfer
In this paper, we design a deep learning based resource allocation framework, in the form of an auction, for simultaneous information and power transfer from a hybrid access point (AP) to information devices and energy harvesting devices, respectively. Using Myerson's lemma and the concept of v...
Saved in:
| Published in: | IEEE transactions on wireless communications Vol. 21; no. 2; pp. 781 - 793 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1536-1276, 1558-2248 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we design a deep learning based resource allocation framework, in the form of an auction, for simultaneous information and power transfer from a hybrid access point (AP) to information devices and energy harvesting devices, respectively. Using Myerson's lemma and the concept of virtual welfare maximization, we develop an optimal dominant-strategy incentive-compatible mechanism for the AP to maximize its expected revenue, based on the devices' bid profiles, valuation distributions, demand profiles, and channel state information. In so doing, we formulate the revenue maximization problem, which is a mixed-integer non-linear program, and propose an efficient Branch-and-Bound (BnB) algorithm to solve the problem using semidefinite relaxation technique in each branch. Since the problem has exponential time complexity, using BnB algorithms can be impractical for real-time applications. To circumvent this, a deep neural network (DNN) is proposed, and trained to predict the optimal mechanism for beamforming the data and the energy towards the information and energy devices, respectively. We use the BnB algorithm to solve the problem offline and populate the training dataset. The proposed DNN architecture is indeed a multi-layer perceptron, which is trained well to map the heterogeneous input to the desired output with high accuracy. Furthermore, we propose a heuristic iterative solution whose accuracy performance is comparable to that of the DNN-based solution. The heuristic solution has polynomial time complexity whereas the DNN-based solution has linear time complexity. |
|---|---|
| AbstractList | In this paper, we design a deep learning based resource allocation framework, in the form of an auction, for simultaneous information and power transfer from a hybrid access point (AP) to information devices and energy harvesting devices, respectively. Using Myerson’s lemma and the concept of virtual welfare maximization, we develop an optimal dominant-strategy incentive-compatible mechanism for the AP to maximize its expected revenue, based on the devices’ bid profiles, valuation distributions, demand profiles, and channel state information. In so doing, we formulate the revenue maximization problem, which is a mixed-integer non-linear program, and propose an efficient Branch-and-Bound (BnB) algorithm to solve the problem using semidefinite relaxation technique in each branch. Since the problem has exponential time complexity, using BnB algorithms can be impractical for real-time applications. To circumvent this, a deep neural network (DNN) is proposed, and trained to predict the optimal mechanism for beamforming the data and the energy towards the information and energy devices, respectively. We use the BnB algorithm to solve the problem offline and populate the training dataset. The proposed DNN architecture is indeed a multi-layer perceptron, which is trained well to map the heterogeneous input to the desired output with high accuracy. Furthermore, we propose a heuristic iterative solution whose accuracy performance is comparable to that of the DNN-based solution. The heuristic solution has polynomial time complexity whereas the DNN-based solution has linear time complexity. |
| Author | Bayat, Ali Aissa, Sonia |
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0003-1417-2682 surname: Bayat fullname: Bayat, Ali email: ali.bayat@inrs.ca organization: Institut National de la Recherche Scientifique (INRS), Montreal, QC, Canada – sequence: 2 givenname: Sonia orcidid: 0000-0002-6880-4772 surname: Aissa fullname: Aissa, Sonia email: sonia.aissa@inrs.ca organization: Institut National de la Recherche Scientifique (INRS), Montreal, QC, Canada |
| BookMark | eNp9kE1LAzEQhoNUsFXvgpeA562ZbJLdPbb1q1DQQ0XwsmSTWUlpszXZKv57d23x4MHTDMPzzgzPiAx845GQC2BjAFZcL19mY844jFNWFGnGj8gQpMwTzkU-6PtUJcAzdUJGMa4Yg0xJOSSvN4hbukAdvPNvdKojWjrZmdY1PrkJ7gM9naLe1E3Y9EBX6YsLuMYY6dz3Y92zVHtLn5pPDHQZtI81hjNyXOt1xPNDPSXPd7fL2UOyeLyfzyaLxPAC2sTmlaiKyvBK8ZpjDha40NpIEFZpWwgrTF1DnkIlc1FVFYICIS0zYHJlWXpKrvZ7t6F532Fsy1WzC747WXLFszwtZCY6Su0pE5oYA9alce3P623Qbl0CK3uPZeex7D2WB49dkP0JboPb6PD1X-RyH3GI-IsXkoFkPP0G91CAKw |
| CODEN | ITWCAX |
| CitedBy_id | crossref_primary_10_1109_TWC_2024_3396437 crossref_primary_10_1109_TVT_2023_3302411 crossref_primary_10_1016_j_comnet_2023_109940 crossref_primary_10_1109_TMC_2023_3317092 |
| Cites_doi | 10.1109/TVT.2016.2641930 10.1109/JSAC.2018.2872615 10.1109/WCNC49053.2021.9417593 10.1109/MSP.2010.936015 10.1007/10997703_12 10.1109/COMST.2018.2811395 10.1109/PIMRC.2017.8292579 10.1109/GLOBECOM42002.2020.9348068 10.1109/MSP.2010.936019 10.1109/SURV.2012.110112.00125 10.1109/LCOMM.2018.2876441 10.1109/MCOM.2014.6957150 10.1109/ICASSP.2015.7178557 10.1109/SPAWC.2019.8815474 10.1109/TSP.2015.2417497 10.1109/ICC.2014.6883469 10.1109/TSP.2014.2340817 10.1145/3470442 10.1109/LCOMM.2018.2866433 10.1109/MCOM.2012.6353690 10.1109/TSP.2014.2352604 10.1109/TWC.2020.3041319 10.1109/LWC.2016.2555901 10.1109/GLOBECOM42002.2020.9322279 10.1017/CBO9780511800481.011 10.1109/TVT.2003.819629 10.1017/CBO9780511807213 10.1109/TVT.2019.2953724 10.1109/MWC.2009.4907555 10.1007/0-387-30528-9_7 10.1109/TSP.2018.2862398 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TWC.2021.3099372 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2248 |
| EndPage | 793 |
| ExternalDocumentID | 10_1109_TWC_2021_3099372 9501502 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada funderid: 10.13039/501100000038 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-d8b4b9bc2b62f2e81d124aac514d6ad94d4cff1831b584bbbe16145d0c1c86d03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000754251000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1536-1276 |
| IngestDate | Fri Jul 25 12:28:33 EDT 2025 Sat Nov 29 06:23:52 EST 2025 Tue Nov 18 22:18:20 EST 2025 Wed Aug 27 02:49:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-d8b4b9bc2b62f2e81d124aac514d6ad94d4cff1831b584bbbe16145d0c1c86d03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6880-4772 0000-0003-1417-2682 |
| PQID | 2627839574 |
| PQPubID | 105736 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TWC_2021_3099372 crossref_primary_10_1109_TWC_2021_3099372 proquest_journals_2627839574 ieee_primary_9501502 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Feb. 2022-2-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-Feb. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on wireless communications |
| PublicationTitleAbbrev | TWC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref37 ref14 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Abadi (ref35) 2015 Jiang (ref27) Kingma (ref38) 2014 Bengtsson (ref31) ref24 ref23 ref26 ref25 ref20 ref22 ref28 Hartline (ref29) 2013; 122 ref8 ref7 ref9 ref4 ref3 ref6 ref5 O’Malley (ref36) 2019 Al-Eryani (ref21) 2020 |
| References_xml | – ident: ref11 doi: 10.1109/TVT.2016.2641930 – ident: ref2 doi: 10.1109/JSAC.2018.2872615 – ident: ref14 doi: 10.1109/WCNC49053.2021.9417593 – ident: ref32 doi: 10.1109/MSP.2010.936015 – ident: ref37 doi: 10.1007/10997703_12 – ident: ref7 doi: 10.1109/COMST.2018.2811395 – ident: ref12 doi: 10.1109/PIMRC.2017.8292579 – start-page: 987 volume-title: Proc. Annu. Allerton Conf. Commun., Control Comput. ident: ref31 article-title: Optimal downlink beamforming using semidefinite optimization – ident: ref15 doi: 10.1109/GLOBECOM42002.2020.9348068 – ident: ref34 doi: 10.1109/MSP.2010.936019 – year: 2020 ident: ref21 article-title: Simultaneous energy harvesting and information transmission in a MIMO full-duplex system: A machine learning-based design publication-title: arXiv:2002.06193 – volume: 122 start-page: 1 year: 2013 ident: ref29 article-title: Mechanism design and approximation publication-title: Book Draft – ident: ref3 doi: 10.1109/SURV.2012.110112.00125 – start-page: 98 volume-title: Proc. Workshop Game Theoretic Decis. Theoretic Agents (IJCAI) ident: ref27 article-title: Estimating bidders’ valuation distributions in online auctions – ident: ref20 doi: 10.1109/LCOMM.2018.2876441 – ident: ref1 doi: 10.1109/MCOM.2014.6957150 – ident: ref9 doi: 10.1109/ICASSP.2015.7178557 – ident: ref19 doi: 10.1109/SPAWC.2019.8815474 – ident: ref25 doi: 10.1109/TSP.2015.2417497 – ident: ref8 doi: 10.1109/ICC.2014.6883469 – ident: ref23 doi: 10.1109/TSP.2014.2340817 – ident: ref16 doi: 10.1145/3470442 – year: 2014 ident: ref38 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref13 doi: 10.1109/LCOMM.2018.2866433 – ident: ref6 doi: 10.1109/MCOM.2012.6353690 – ident: ref28 doi: 10.1109/TSP.2014.2352604 – ident: ref18 doi: 10.1109/TWC.2020.3041319 – ident: ref10 doi: 10.1109/LWC.2016.2555901 – ident: ref24 doi: 10.1109/GLOBECOM42002.2020.9322279 – ident: ref26 doi: 10.1017/CBO9780511800481.011 – ident: ref22 doi: 10.1109/TVT.2003.819629 – ident: ref33 doi: 10.1017/CBO9780511807213 – volume-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems year: 2015 ident: ref35 – ident: ref17 doi: 10.1109/TVT.2019.2953724 – ident: ref5 doi: 10.1109/MWC.2009.4907555 – ident: ref30 doi: 10.1007/0-387-30528-9_7 – ident: ref4 doi: 10.1109/TSP.2018.2862398 – volume-title: Keras Tuner year: 2019 ident: ref36 |
| SSID | ssj0017655 |
| Score | 2.4145842 |
| Snippet | In this paper, we design a deep learning based resource allocation framework, in the form of an auction, for simultaneous information and power transfer from a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 781 |
| SubjectTerms | Algorithms Array signal processing Artificial neural networks Auction theory Beamforming Complexity Deep learning Devices Energy harvesting Erbium Heuristic Heuristic algorithms Iterative solution Machine learning Maximization Mixed integer Multilayers Optimization Polynomials Power transfer Real-time systems Resource allocation Resource management Revenue simultaneous wireless information and power transfer (SWIPT) Time complexity Training |
| Title | Deep Learning Based Auction-Driven Beamforming for Wireless Information and Power Transfer |
| URI | https://ieeexplore.ieee.org/document/9501502 https://www.proquest.com/docview/2627839574 |
| Volume | 21 |
| WOSCitedRecordID | wos000754251000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017655 issn: 1536-1276 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5q8aAHX1WsVtmDF8G0ySbZx7EPi6fSQ8XiJWQfEUHTkrb-fnc2aVAUwVNymIWwszvzTebxIXSj4oxA_syGJVx6UZAGng2DtEc5D2UmeRho5cgm2GTC53MxbaC7uhfGGOOKz0wXXl0uXy_UBn6V9UQM8bk1uDuM0bJXq84YMOoYTu0FBl4ZVqckfdGbPQ1tIEiCbuiDNybfXJDjVPlhiJ13GR_-77uO0EGFInG_VPsxapj8BO1_mS3YQs8jY5a4Gp_6ggfWW2ncL2fFeqMCjBwemPQdQCsI2CeGUtg3a_pw1aQEsjjNNZ4Clxp2fi0zxSl6HN_Phg9eRaTgKSKCtae5jKSQikhKMmIsRLVePU2VBUuaplpEOlJZZi93IC0ekVIaiwOjWPsqUJxqPzxDzXyRm3OEU8qELy0qYoxHymRpyCLNtAhFxomSuo16271NVDVlHMgu3hIXbfgisdpIQBtJpY02uq1XLMsJG3_ItmD3a7lq49uos1VfUl3BVUIokIiImEUXv6-6RHsEehlcCXYHNdfFxlyhXfWxfl0V1-50fQJZ88yP |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5EBfXgq4r1uQcvgmmTTZrdPdpWUaylh4rFS8g-IkKt0oe_353tGhRF8JQcZiHs7M58k3l8AKeqUVDMn9mwhMsgifIosGGQDlLOY1lIHkdaObIJ1u3ywUD0FuC87IUxxrjiM1PDV5fL169qhr_K6qKB8bk1uEvInOW7tcqcAUsdx6m9wsgsw8qkZCjq_YeWDQVpVItD9Mf0mxNyrCo_TLHzL1cb__uyTVj3OJJczBW_BQtmtA1rX6YLVuCxbcwb8QNUn0jT-itNLubTYoP2GM0caZr8BWErCtgnwWLYoTV-xLcpoSzJR5r0kE2NOM9WmPEO3F9d9lvXgadSCBQV0TTQXCZSSEVlSgtqLEi1fj3PlYVLOs21SHSiisJe70haRCKlNBYJJg0dqkjxVIfxLiyOXkdmD0ieMhFKi4sY44kyRR6zRDMtYlFwqqSuQv1zbzPl54wj3cUwc_FGKDKrjQy1kXltVOGsXPE2n7Hxh2wFd7-U8xtfhcNP9WX-Ek4ymiKNiGiwZP_3VSewct2_62Sdm-7tAaxS7GxwBdmHsDgdz8wRLKv36fNkfOxO2gcr98_Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+Auction-Driven+Beamforming+for+Wireless+Information+and+Power+Transfer&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Bayat%2C+Ali&rft.au=Aissa%2C+Sonia&rft.date=2022-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=21&rft.issue=2&rft.spage=781&rft_id=info:doi/10.1109%2FTWC.2021.3099372&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |