Deep Learning Based Auction-Driven Beamforming for Wireless Information and Power Transfer

In this paper, we design a deep learning based resource allocation framework, in the form of an auction, for simultaneous information and power transfer from a hybrid access point (AP) to information devices and energy harvesting devices, respectively. Using Myerson's lemma and the concept of v...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 21; no. 2; pp. 781 - 793
Main Authors: Bayat, Ali, Aissa, Sonia
Format: Journal Article
Language:English
Published: New York IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1536-1276, 1558-2248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we design a deep learning based resource allocation framework, in the form of an auction, for simultaneous information and power transfer from a hybrid access point (AP) to information devices and energy harvesting devices, respectively. Using Myerson's lemma and the concept of virtual welfare maximization, we develop an optimal dominant-strategy incentive-compatible mechanism for the AP to maximize its expected revenue, based on the devices' bid profiles, valuation distributions, demand profiles, and channel state information. In so doing, we formulate the revenue maximization problem, which is a mixed-integer non-linear program, and propose an efficient Branch-and-Bound (BnB) algorithm to solve the problem using semidefinite relaxation technique in each branch. Since the problem has exponential time complexity, using BnB algorithms can be impractical for real-time applications. To circumvent this, a deep neural network (DNN) is proposed, and trained to predict the optimal mechanism for beamforming the data and the energy towards the information and energy devices, respectively. We use the BnB algorithm to solve the problem offline and populate the training dataset. The proposed DNN architecture is indeed a multi-layer perceptron, which is trained well to map the heterogeneous input to the desired output with high accuracy. Furthermore, we propose a heuristic iterative solution whose accuracy performance is comparable to that of the DNN-based solution. The heuristic solution has polynomial time complexity whereas the DNN-based solution has linear time complexity.
AbstractList In this paper, we design a deep learning based resource allocation framework, in the form of an auction, for simultaneous information and power transfer from a hybrid access point (AP) to information devices and energy harvesting devices, respectively. Using Myerson’s lemma and the concept of virtual welfare maximization, we develop an optimal dominant-strategy incentive-compatible mechanism for the AP to maximize its expected revenue, based on the devices’ bid profiles, valuation distributions, demand profiles, and channel state information. In so doing, we formulate the revenue maximization problem, which is a mixed-integer non-linear program, and propose an efficient Branch-and-Bound (BnB) algorithm to solve the problem using semidefinite relaxation technique in each branch. Since the problem has exponential time complexity, using BnB algorithms can be impractical for real-time applications. To circumvent this, a deep neural network (DNN) is proposed, and trained to predict the optimal mechanism for beamforming the data and the energy towards the information and energy devices, respectively. We use the BnB algorithm to solve the problem offline and populate the training dataset. The proposed DNN architecture is indeed a multi-layer perceptron, which is trained well to map the heterogeneous input to the desired output with high accuracy. Furthermore, we propose a heuristic iterative solution whose accuracy performance is comparable to that of the DNN-based solution. The heuristic solution has polynomial time complexity whereas the DNN-based solution has linear time complexity.
Author Bayat, Ali
Aissa, Sonia
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0003-1417-2682
  surname: Bayat
  fullname: Bayat, Ali
  email: ali.bayat@inrs.ca
  organization: Institut National de la Recherche Scientifique (INRS), Montreal, QC, Canada
– sequence: 2
  givenname: Sonia
  orcidid: 0000-0002-6880-4772
  surname: Aissa
  fullname: Aissa, Sonia
  email: sonia.aissa@inrs.ca
  organization: Institut National de la Recherche Scientifique (INRS), Montreal, QC, Canada
BookMark eNp9kE1LAzEQhoNUsFXvgpeA562ZbJLdPbb1q1DQQ0XwsmSTWUlpszXZKv57d23x4MHTDMPzzgzPiAx845GQC2BjAFZcL19mY844jFNWFGnGj8gQpMwTzkU-6PtUJcAzdUJGMa4Yg0xJOSSvN4hbukAdvPNvdKojWjrZmdY1PrkJ7gM9naLe1E3Y9EBX6YsLuMYY6dz3Y92zVHtLn5pPDHQZtI81hjNyXOt1xPNDPSXPd7fL2UOyeLyfzyaLxPAC2sTmlaiKyvBK8ZpjDha40NpIEFZpWwgrTF1DnkIlc1FVFYICIS0zYHJlWXpKrvZ7t6F532Fsy1WzC747WXLFszwtZCY6Su0pE5oYA9alce3P623Qbl0CK3uPZeex7D2WB49dkP0JboPb6PD1X-RyH3GI-IsXkoFkPP0G91CAKw
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_TWC_2024_3396437
crossref_primary_10_1109_TVT_2023_3302411
crossref_primary_10_1016_j_comnet_2023_109940
crossref_primary_10_1109_TMC_2023_3317092
Cites_doi 10.1109/TVT.2016.2641930
10.1109/JSAC.2018.2872615
10.1109/WCNC49053.2021.9417593
10.1109/MSP.2010.936015
10.1007/10997703_12
10.1109/COMST.2018.2811395
10.1109/PIMRC.2017.8292579
10.1109/GLOBECOM42002.2020.9348068
10.1109/MSP.2010.936019
10.1109/SURV.2012.110112.00125
10.1109/LCOMM.2018.2876441
10.1109/MCOM.2014.6957150
10.1109/ICASSP.2015.7178557
10.1109/SPAWC.2019.8815474
10.1109/TSP.2015.2417497
10.1109/ICC.2014.6883469
10.1109/TSP.2014.2340817
10.1145/3470442
10.1109/LCOMM.2018.2866433
10.1109/MCOM.2012.6353690
10.1109/TSP.2014.2352604
10.1109/TWC.2020.3041319
10.1109/LWC.2016.2555901
10.1109/GLOBECOM42002.2020.9322279
10.1017/CBO9780511800481.011
10.1109/TVT.2003.819629
10.1017/CBO9780511807213
10.1109/TVT.2019.2953724
10.1109/MWC.2009.4907555
10.1007/0-387-30528-9_7
10.1109/TSP.2018.2862398
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2021.3099372
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 793
ExternalDocumentID 10_1109_TWC_2021_3099372
9501502
Genre orig-research
GrantInformation_xml – fundername: Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada
  funderid: 10.13039/501100000038
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-d8b4b9bc2b62f2e81d124aac514d6ad94d4cff1831b584bbbe16145d0c1c86d03
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000754251000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
IngestDate Fri Jul 25 12:28:33 EDT 2025
Sat Nov 29 06:23:52 EST 2025
Tue Nov 18 22:18:20 EST 2025
Wed Aug 27 02:49:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-d8b4b9bc2b62f2e81d124aac514d6ad94d4cff1831b584bbbe16145d0c1c86d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6880-4772
0000-0003-1417-2682
PQID 2627839574
PQPubID 105736
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TWC_2021_3099372
crossref_primary_10_1109_TWC_2021_3099372
proquest_journals_2627839574
ieee_primary_9501502
PublicationCentury 2000
PublicationDate 2022-Feb.
2022-2-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-Feb.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Abadi (ref35) 2015
Jiang (ref27)
Kingma (ref38) 2014
Bengtsson (ref31)
ref24
ref23
ref26
ref25
ref20
ref22
ref28
Hartline (ref29) 2013; 122
ref8
ref7
ref9
ref4
ref3
ref6
ref5
O’Malley (ref36) 2019
Al-Eryani (ref21) 2020
References_xml – ident: ref11
  doi: 10.1109/TVT.2016.2641930
– ident: ref2
  doi: 10.1109/JSAC.2018.2872615
– ident: ref14
  doi: 10.1109/WCNC49053.2021.9417593
– ident: ref32
  doi: 10.1109/MSP.2010.936015
– ident: ref37
  doi: 10.1007/10997703_12
– ident: ref7
  doi: 10.1109/COMST.2018.2811395
– ident: ref12
  doi: 10.1109/PIMRC.2017.8292579
– start-page: 987
  volume-title: Proc. Annu. Allerton Conf. Commun., Control Comput.
  ident: ref31
  article-title: Optimal downlink beamforming using semidefinite optimization
– ident: ref15
  doi: 10.1109/GLOBECOM42002.2020.9348068
– ident: ref34
  doi: 10.1109/MSP.2010.936019
– year: 2020
  ident: ref21
  article-title: Simultaneous energy harvesting and information transmission in a MIMO full-duplex system: A machine learning-based design
  publication-title: arXiv:2002.06193
– volume: 122
  start-page: 1
  year: 2013
  ident: ref29
  article-title: Mechanism design and approximation
  publication-title: Book Draft
– ident: ref3
  doi: 10.1109/SURV.2012.110112.00125
– start-page: 98
  volume-title: Proc. Workshop Game Theoretic Decis. Theoretic Agents (IJCAI)
  ident: ref27
  article-title: Estimating bidders’ valuation distributions in online auctions
– ident: ref20
  doi: 10.1109/LCOMM.2018.2876441
– ident: ref1
  doi: 10.1109/MCOM.2014.6957150
– ident: ref9
  doi: 10.1109/ICASSP.2015.7178557
– ident: ref19
  doi: 10.1109/SPAWC.2019.8815474
– ident: ref25
  doi: 10.1109/TSP.2015.2417497
– ident: ref8
  doi: 10.1109/ICC.2014.6883469
– ident: ref23
  doi: 10.1109/TSP.2014.2340817
– ident: ref16
  doi: 10.1145/3470442
– year: 2014
  ident: ref38
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref13
  doi: 10.1109/LCOMM.2018.2866433
– ident: ref6
  doi: 10.1109/MCOM.2012.6353690
– ident: ref28
  doi: 10.1109/TSP.2014.2352604
– ident: ref18
  doi: 10.1109/TWC.2020.3041319
– ident: ref10
  doi: 10.1109/LWC.2016.2555901
– ident: ref24
  doi: 10.1109/GLOBECOM42002.2020.9322279
– ident: ref26
  doi: 10.1017/CBO9780511800481.011
– ident: ref22
  doi: 10.1109/TVT.2003.819629
– ident: ref33
  doi: 10.1017/CBO9780511807213
– volume-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
  year: 2015
  ident: ref35
– ident: ref17
  doi: 10.1109/TVT.2019.2953724
– ident: ref5
  doi: 10.1109/MWC.2009.4907555
– ident: ref30
  doi: 10.1007/0-387-30528-9_7
– ident: ref4
  doi: 10.1109/TSP.2018.2862398
– volume-title: Keras Tuner
  year: 2019
  ident: ref36
SSID ssj0017655
Score 2.4145842
Snippet In this paper, we design a deep learning based resource allocation framework, in the form of an auction, for simultaneous information and power transfer from a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 781
SubjectTerms Algorithms
Array signal processing
Artificial neural networks
Auction theory
Beamforming
Complexity
Deep learning
Devices
Energy harvesting
Erbium
Heuristic
Heuristic algorithms
Iterative solution
Machine learning
Maximization
Mixed integer
Multilayers
Optimization
Polynomials
Power transfer
Real-time systems
Resource allocation
Resource management
Revenue
simultaneous wireless information and power transfer (SWIPT)
Time complexity
Training
Title Deep Learning Based Auction-Driven Beamforming for Wireless Information and Power Transfer
URI https://ieeexplore.ieee.org/document/9501502
https://www.proquest.com/docview/2627839574
Volume 21
WOSCitedRecordID wos000754251000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5q8aAHX1WsVtmDF8G0ySbZx7EPi6fSQ8XiJWQfEUHTkrb-fnc2aVAUwVNymIWwszvzTebxIXSj4oxA_syGJVx6UZAGng2DtEc5D2UmeRho5cgm2GTC53MxbaC7uhfGGOOKz0wXXl0uXy_UBn6V9UQM8bk1uDuM0bJXq84YMOoYTu0FBl4ZVqckfdGbPQ1tIEiCbuiDNybfXJDjVPlhiJ13GR_-77uO0EGFInG_VPsxapj8BO1_mS3YQs8jY5a4Gp_6ggfWW2ncL2fFeqMCjBwemPQdQCsI2CeGUtg3a_pw1aQEsjjNNZ4Clxp2fi0zxSl6HN_Phg9eRaTgKSKCtae5jKSQikhKMmIsRLVePU2VBUuaplpEOlJZZi93IC0ekVIaiwOjWPsqUJxqPzxDzXyRm3OEU8qELy0qYoxHymRpyCLNtAhFxomSuo16271NVDVlHMgu3hIXbfgisdpIQBtJpY02uq1XLMsJG3_ItmD3a7lq49uos1VfUl3BVUIokIiImEUXv6-6RHsEehlcCXYHNdfFxlyhXfWxfl0V1-50fQJZ88yP
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5EBfXgq4r1uQcvgmmTTZrdPdpWUaylh4rFS8g-IkKt0oe_353tGhRF8JQcZiHs7M58k3l8AKeqUVDMn9mwhMsgifIosGGQDlLOY1lIHkdaObIJ1u3ywUD0FuC87IUxxrjiM1PDV5fL169qhr_K6qKB8bk1uEvInOW7tcqcAUsdx6m9wsgsw8qkZCjq_YeWDQVpVItD9Mf0mxNyrCo_TLHzL1cb__uyTVj3OJJczBW_BQtmtA1rX6YLVuCxbcwb8QNUn0jT-itNLubTYoP2GM0caZr8BWErCtgnwWLYoTV-xLcpoSzJR5r0kE2NOM9WmPEO3F9d9lvXgadSCBQV0TTQXCZSSEVlSgtqLEi1fj3PlYVLOs21SHSiisJe70haRCKlNBYJJg0dqkjxVIfxLiyOXkdmD0ieMhFKi4sY44kyRR6zRDMtYlFwqqSuQv1zbzPl54wj3cUwc_FGKDKrjQy1kXltVOGsXPE2n7Hxh2wFd7-U8xtfhcNP9WX-Ek4ymiKNiGiwZP_3VSewct2_62Sdm-7tAaxS7GxwBdmHsDgdz8wRLKv36fNkfOxO2gcr98_Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+Auction-Driven+Beamforming+for+Wireless+Information+and+Power+Transfer&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Bayat%2C+Ali&rft.au=Aissa%2C+Sonia&rft.date=2022-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1276&rft.eissn=1558-2248&rft.volume=21&rft.issue=2&rft.spage=781&rft_id=info:doi/10.1109%2FTWC.2021.3099372&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon