Distributed Gradient Descent Algorithm Robust to an Arbitrary Number of Byzantine Attackers

Due to the growth of modern dataset size and the desire to harness computing power of multiple machines, there is a recent surge of interest in the design of distributed machine learning algorithms. However, distributed algorithms are sensitive to Byzantine attackers who can send falsified data to p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 67; no. 22; pp. 5850 - 5864
Main Authors: Cao, Xinyang, Lai, Lifeng
Format: Journal Article
Language:English
Published: New York IEEE 15.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to the growth of modern dataset size and the desire to harness computing power of multiple machines, there is a recent surge of interest in the design of distributed machine learning algorithms. However, distributed algorithms are sensitive to Byzantine attackers who can send falsified data to prevent the convergence of algorithms or lead the algorithms to converge to value of the attackers' choice. Some recent work proposed interesting algorithms that can deal with the scenario when up to half of the workers are compromised. In this paper, we propose a novel algorithm that can deal with an arbitrary number of Byzantine attackers. The main idea is to ask the parameter server to randomly select a small clean dataset and compute noisy gradient using this small dataset. This noisy gradient will then be used as a ground truth to filter out information sent by compromised workers. We show that the proposed algorithm converges to the neighborhood of the population minimizer regardless the number of Byzantine attackers. We further provide numerical examples to show that the proposed algorithm can benefit from the presence of good workers and achieve better performance than existing algorithms.
AbstractList Due to the growth of modern dataset size and the desire to harness computing power of multiple machines, there is a recent surge of interest in the design of distributed machine learning algorithms. However, distributed algorithms are sensitive to Byzantine attackers who can send falsified data to prevent the convergence of algorithms or lead the algorithms to converge to value of the attackers' choice. Some recent work proposed interesting algorithms that can deal with the scenario when up to half of the workers are compromised. In this paper, we propose a novel algorithm that can deal with an arbitrary number of Byzantine attackers. The main idea is to ask the parameter server to randomly select a small clean dataset and compute noisy gradient using this small dataset. This noisy gradient will then be used as a ground truth to filter out information sent by compromised workers. We show that the proposed algorithm converges to the neighborhood of the population minimizer regardless the number of Byzantine attackers. We further provide numerical examples to show that the proposed algorithm can benefit from the presence of good workers and achieve better performance than existing algorithms.
Author Lai, Lifeng
Cao, Xinyang
Author_xml – sequence: 1
  givenname: Xinyang
  surname: Cao
  fullname: Cao, Xinyang
  email: xycao@ucdavis.edu
  organization: Department of Electrical and Computer Engineering, University of California, Davis, CA, USA
– sequence: 2
  givenname: Lifeng
  orcidid: 0000-0002-9493-8248
  surname: Lai
  fullname: Lai, Lifeng
  email: lflai@ucdavis.edu
  organization: Department of Electrical and Computer Engineering, University of California, Davis, CA, USA
BookMark eNp9kL1PwzAUxC1UJNrCjsRiiTnFH4kbj6GFglQBgiIhMUR2_AIubVxsZyh_PamKGBiY7g33e6e7Aeo1rgGETikZUUrkxeLpYcQIlSMmU0EYOUB9KlOakHQset1NMp5k-fjlCA1CWBJC01SKPnqd2hC91W0Eg2deGQtNxFMI1U6L1ZvzNr6v8aPTbYg4OqwaXHhto1d-i-_atQaPXY0vt1-qibYBXMSoqg_w4Rgd1moV4ORHh-j5-moxuUnm97PbSTFPKiZpTEyeCaMBUiC5qQ2hDDRQUUtaGZ3JnOdiDCBrykRFqFbM1AIyYjQ3nCum-BCd7_9uvPtsIcRy6VrfdJEl45QIkTGedS6yd1XeheChLjferrsSJSXlbsKym7DcTVj-TNgh4g9S2aiidU3X3q7-A8_2oAWA35w8F5RLzr8Bh1SBiQ
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_JIOT_2023_3272334
crossref_primary_10_1145_3616537
crossref_primary_10_1109_TIT_2024_3442211
crossref_primary_10_1080_0952813X_2024_2391778
crossref_primary_10_1109_JSAC_2025_3560046
crossref_primary_10_1007_s11425_023_2217_2
crossref_primary_10_1016_j_sigpro_2024_109419
crossref_primary_10_1016_j_comnet_2023_110081
crossref_primary_10_3390_app14010351
crossref_primary_10_1109_TIFS_2024_3360869
crossref_primary_10_1109_TCE_2024_3376561
crossref_primary_10_1016_j_comnet_2025_111234
crossref_primary_10_1109_TNSE_2025_3551923
crossref_primary_10_3390_electronics10141687
crossref_primary_10_1016_j_ijepes_2020_106662
crossref_primary_10_1109_TMC_2025_3571058
crossref_primary_10_1109_ACCESS_2025_3602217
crossref_primary_10_1109_TSP_2025_3564842
crossref_primary_10_1109_TNNLS_2025_3563537
crossref_primary_10_1007_s10462_024_10797_0
crossref_primary_10_1109_TIFS_2025_3564879
crossref_primary_10_1109_TSP_2025_3539883
crossref_primary_10_1109_TSP_2020_3029461
crossref_primary_10_3390_sym17071159
crossref_primary_10_1109_ACCESS_2023_3297112
crossref_primary_10_1002_cpe_8084
crossref_primary_10_3390_electronics9061038
crossref_primary_10_1109_TNNLS_2024_3436149
crossref_primary_10_1109_TSIPN_2023_3265892
crossref_primary_10_1016_j_ins_2022_10_120
crossref_primary_10_1007_s11277_020_07354_7
crossref_primary_10_1016_j_adhoc_2025_103934
crossref_primary_10_1016_j_sigpro_2023_109222
crossref_primary_10_1109_JIOT_2024_3523293
crossref_primary_10_1109_JSTSP_2021_3137028
crossref_primary_10_1109_TSP_2021_3078624
crossref_primary_10_1109_TIT_2025_3542896
crossref_primary_10_3390_electronics13081540
crossref_primary_10_1109_TSP_2022_3153135
Cites_doi 10.1109/TSP.2015.2393839
10.1007/s10107-015-0901-6
10.1016/j.radonc.2016.10.002
10.1109/TSP.2015.2430837
10.1109/TSP.2017.2656847
10.1080/01621459.2018.1429274
10.1145/2046684.2046692
10.1002/9780470515143.ch9
10.1109/TSP.2017.2695451
10.1561/2200000016
10.1145/3219617.3219655
10.1109/ICASSP.2018.8461691
10.1109/TSP.2015.2434327
10.1109/TSP.2013.2273887
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2019.2946020
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1941-0476
EndPage 5864
ExternalDocumentID 10_1109_TSP_2019_2946020
8861393
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: ECCS-17-11468; CCF-17-17943; CNS-1824553; CCF-1908258
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-d856dbee4e08dfd012ebe16f91cdb5983867ee9f126c01ba2df6e50db3d33a2a3
IEDL.DBID RIE
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000494309800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:11:16 EDT 2025
Tue Nov 18 22:04:51 EST 2025
Sat Nov 29 04:10:50 EST 2025
Wed Aug 27 02:40:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-d856dbee4e08dfd012ebe16f91cdb5983867ee9f126c01ba2df6e50db3d33a2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9493-8248
PQID 2310665235
PQPubID 85478
PageCount 15
ParticipantIDs ieee_primary_8861393
proquest_journals_2310665235
crossref_primary_10_1109_TSP_2019_2946020
crossref_citationtrail_10_1109_TSP_2019_2946020
PublicationCentury 2000
PublicationDate 2019-11-15
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
richtárik (ref17) 2016; 17
su (ref27) 2018
moritz (ref6) 2016
ref14
chen (ref25) 0
ref30
ref11
ref10
zhang (ref16) 0
wainwright (ref35) 2015
ref1
lecun (ref32) 2010; 2
ref19
bottou (ref7) 0
blanchard (ref21) 2017
ref18
gordon (ref31) 2006; 22
crotty (ref2) 2014; 37
alistarh (ref22) 0
xie (ref29) 2018
ref20
krizhevsky (ref33) 2014
vershynin (ref34) 2010
damaskinos (ref26) 2018
yin (ref24) 2018
yin (ref28) 2018
lee (ref8) 2017; 18
ref9
xie (ref23) 2018
ref3
ref5
provost (ref4) 0; 1
References_xml – ident: ref13
  doi: 10.1109/TSP.2015.2393839
– ident: ref18
  doi: 10.1007/s10107-015-0901-6
– ident: ref19
  doi: 10.1016/j.radonc.2016.10.002
– year: 2010
  ident: ref34
  article-title: Introduction to the non-asymptotic analysis of random matrices
  publication-title: arXiv 1011 3027
– start-page: 1
  year: 0
  ident: ref25
  article-title: DRACO: Byzantine-resilient Distributed Training via Redundant Gradients
  publication-title: Proc Intl Conf Mach Learning
– ident: ref12
  doi: 10.1109/TSP.2015.2430837
– year: 2018
  ident: ref29
  article-title: Zeno: Byzantine-suspicious stochastic gradient descent
  publication-title: arXiv 1805 10032
– start-page: 4613
  year: 0
  ident: ref22
  article-title: Byzantine stochastic gradient descent
  publication-title: Proc Advances Neural Inform Process Syst
– volume: 18
  start-page: 4404
  year: 2017
  ident: ref8
  article-title: Distributed stochastic variance reduced gradient methods by sampling extra data with replacement
  publication-title: J Mach Learn Res
– year: 2018
  ident: ref24
  article-title: Byzantine-robust distributed learning: Towards optimal statistical rates
  publication-title: arxiv 1803 01498
– year: 2016
  ident: ref6
  article-title: Sparknet: Training deep networks in spark
  publication-title: arXiv 1511 06051
– ident: ref11
  doi: 10.1109/TSP.2017.2656847
– volume: 17
  start-page: 2657
  year: 2016
  ident: ref17
  article-title: Distributed coordinate descent method for learning with big data
  publication-title: J Mach Learn Res
– ident: ref3
  doi: 10.1080/01621459.2018.1429274
– start-page: 177
  year: 0
  ident: ref7
  article-title: Large-scale machine learning with stochastic gradient descent
  publication-title: Proc Int Conf Comput Statist
– volume: 37
  start-page: 63
  year: 2014
  ident: ref2
  article-title: Tupleware: Distributed machine learning on small clusters
  publication-title: IEEE Data Eng Bull
– year: 2018
  ident: ref26
  article-title: Asynchronous byzantine machine learning
  publication-title: arXiv 1802 07928
– ident: ref30
  doi: 10.1145/2046684.2046692
– ident: ref9
  doi: 10.1002/9780470515143.ch9
– year: 2018
  ident: ref27
  article-title: Securing distributed machine learning in high dimensions
  publication-title: arXiv 1804 10140
– volume: 1
  start-page: 74
  year: 0
  ident: ref4
  article-title: Scaling up: Distributed machine learning with cooperation
  publication-title: Proc Nat Conf Artif Intell
– year: 2015
  ident: ref35
  publication-title: High-dimensional statistics A non-asymptotic viewpoint
– volume: 2
  year: 2010
  ident: ref32
  article-title: Mnist handwritten digit database
– ident: ref10
  doi: 10.1109/TSP.2017.2695451
– ident: ref5
  doi: 10.1561/2200000016
– volume: 22
  start-page: 1
  year: 2006
  ident: ref31
  article-title: 2006 CSI/FBI computer crime and security survey
  publication-title: Comput Secur
– start-page: 362
  year: 0
  ident: ref16
  article-title: Disco: Distributed optimization for self-concordant empirical loss
  publication-title: Proc Int Conf Mach Learn
– ident: ref20
  doi: 10.1145/3219617.3219655
– year: 2018
  ident: ref28
  article-title: Defending against saddle point attack in byzantine-robust distributed learning
  publication-title: arXiv 1806 05358
– year: 2018
  ident: ref23
  article-title: Phocas: Dimensional byzantine-resilient stochastic gradient descent
  publication-title: arXiv 1805 09682
– ident: ref1
  doi: 10.1109/ICASSP.2018.8461691
– ident: ref14
  doi: 10.1109/TSP.2015.2434327
– ident: ref15
  doi: 10.1109/TSP.2013.2273887
– year: 2017
  ident: ref21
  article-title: Byzantine-tolerant machine learning
  publication-title: arXiv 1703 02757
– year: 2014
  ident: ref33
  article-title: The CIFAR-10 dataset
SSID ssj0014496
Score 2.597748
Snippet Due to the growth of modern dataset size and the desire to harness computing power of multiple machines, there is a recent surge of interest in the design of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5850
SubjectTerms Algorithms
Byzantine attacker
Convergence
Datasets
distributed gradient descent
Ground truth
Machine learning
Optimization
Radio frequency
Robustness (mathematics)
Servers
Signal processing algorithms
Sociology
Statistics
Title Distributed Gradient Descent Algorithm Robust to an Arbitrary Number of Byzantine Attackers
URI https://ieeexplore.ieee.org/document/8861393
https://www.proquest.com/docview/2310665235
Volume 67
WOSCitedRecordID wos000494309800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGH7R4UEPfovTKTl4EaxLkzZNjvP7NMQPGHgoafNWBV1l6wT99SZpNwRF8NQekhD6pHne5P14AA4KS5GUsyQwuXMzJgULNGUYJJZ67IJiTGrjxSaSfl8OBup6Do5muTCI6IPP8Ni9el--KfOJuyrrSmnJR_F5mE8SUedqzTwGUeS1uKy5wINYJoOpS5Kq7t3ttYvhUsdMRYI6Ze9vFOQ1VX5sxJ5dLlb-N69VWG6sSNKrYV-DORyuw9K32oLrsOjMyLoK8wY8nLn6uE7aCg25HPkwr4qc1aWcSO_lsRw9V0-v5KbMJuOKVCXRQzt69uyT8knfy4aQsiAnH5_aaUsg6VWVdiEZ4024vzi_O70KGlmFIGcqrAIjY2EyxAipNIWxDGWBDEWhwtxksZJcigRRFSETOQ0zzUwhMKYm44ZzzTTfgtawHOI2kDhElWkqCvuItKIqjzjaPRZlxBmPWBu60y-d5k3NcSd98ZL6swdVqcUmddikDTZtOJz1eKvrbfzRdsNhMWvXwNCGzhTMtPkhx6kzY4Wwp-545_deu7DoxnZphmHcgVY1muAeLOTvFqrRvl9rX62w0Yo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD4ChgQ8MG4THWzzAy-TCHVsx7Efy21MQIW2IlXiIXLikw2JNahNkbZfP9tJK6QhpD0lD7YT5bP9HedcPoCD0lEk5SyNbOHdjGnJIkMZRqmjHjehGFPGBrGJtN9Xw6G-WYDDeS4MIobgMzzyt8GXb6ti6n-VdZVy5KP5IrxJhGC0ydaa-wyECGpczmDgUaLS4cwpSXV38P3GR3HpI6aFpF7b-xkJBVWVf7biwC_nb__vzTZgvbUjSa8BfhMWcLQFa8-qC27BqjckmzrM23B36ivkenErtOTLOAR61eS0KeZEeg8_qvF9_fMX-Vbl00lN6oqYkRs9vw9p-aQfhENIVZLj33-MV5dA0qtr44MyJjtwe342OLmIWmGFqGA6riOrEmlzRIFU2dI6jnJQxrLUcWHzRCuuZIqoy5jJgsa5YbaUmFCbc8u5YYa_g6VRNcJdIEmMOjdUlu4ijKa6EBzdLotKcMYF60B39qWzoq067sUvHrJw-qA6c9hkHpusxaYDn-c9HpuKG6-03fZYzNu1MHRgfwZm1i7JSeYNWSnduTt5_3KvT7ByMbi-yq6-9i_3YNU_xycdxsk-LNXjKX6A5eLJwTb-GObdX7pt1NE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Gradient+Descent+Algorithm+Robust+to+an+Arbitrary+Number+of+Byzantine+Attackers&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Cao%2C+Xinyang&rft.au=Lai%2C+Lifeng&rft.date=2019-11-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=67&rft.issue=22&rft.spage=5850&rft_id=info:doi/10.1109%2FTSP.2019.2946020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon