Estimation of California bearing ratio for hill highways using advanced hybrid artificial neural network algorithms

California bearing ratio (CBR) is one of the important parameters that is used to express the strength of the pavement subgrade of railways, roadways, and airport runways. CBR is usually determined in the laboratory in soaked and unsoaked conditions, which is an exhaustive and time-consuming process...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multiscale and Multidisciplinary Modeling, Experiments and Design Ročník 7; číslo 2; s. 1119 - 1144
Hlavní autoři: Thapa, Ishwor, Ghani, Sufyan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.06.2024
Témata:
ISSN:2520-8160, 2520-8179
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract California bearing ratio (CBR) is one of the important parameters that is used to express the strength of the pavement subgrade of railways, roadways, and airport runways. CBR is usually determined in the laboratory in soaked and unsoaked conditions, which is an exhaustive and time-consuming process. Therefore, to sidestep the operation of conducting actual laboratory tests, this study presents the development of efficient hybrid soft computing techniques, by hybridizing artificial neural network (ANN) with nature-inspired optimization algorithm, namely, gradient-based optimization (GBO), firefly algorithm (FF), cultural algorithms (CA), grey wolf optimization (GWO), genetic algorithm (GA), particle swarm optimization (PSO), Harris Hawk optimization (HHO), teaching learning-based optimization (TLBO), Whale optimization algorithm (WOA) and invasive weed optimization (IWO). For this purpose, a data set was prepared from the experimental results of soaked CBR of soil samples collected from an ongoing Nepal’s Mid-Hill Highway project. Based on the detailed comparative study one explicit model is proposed to estimate the CBR of soils in soaked conditions. The predictive accuracy of the proposed models was evaluated via several statistical and graphical parameters. Separate statistical indices were employed to evaluate the generalization capabilities of the developed models. In addition, in the end, the best predictive model was determined using a novel tool called order analysis. The results of the study reveal that the proposed artificial neural network coupled with the gradient-based optimizer (ANN–GBO) model attained the most accurate prediction ( R 2  = 0. 997and R 2  = 0.956, during the training and testing phase) in predicting the soaked CBR. Based on the accuracies attained, the proposed ANN–GBO model has very potential to be an alternate solution to estimate the CBR value in different phases of civil engineering projects.
AbstractList California bearing ratio (CBR) is one of the important parameters that is used to express the strength of the pavement subgrade of railways, roadways, and airport runways. CBR is usually determined in the laboratory in soaked and unsoaked conditions, which is an exhaustive and time-consuming process. Therefore, to sidestep the operation of conducting actual laboratory tests, this study presents the development of efficient hybrid soft computing techniques, by hybridizing artificial neural network (ANN) with nature-inspired optimization algorithm, namely, gradient-based optimization (GBO), firefly algorithm (FF), cultural algorithms (CA), grey wolf optimization (GWO), genetic algorithm (GA), particle swarm optimization (PSO), Harris Hawk optimization (HHO), teaching learning-based optimization (TLBO), Whale optimization algorithm (WOA) and invasive weed optimization (IWO). For this purpose, a data set was prepared from the experimental results of soaked CBR of soil samples collected from an ongoing Nepal’s Mid-Hill Highway project. Based on the detailed comparative study one explicit model is proposed to estimate the CBR of soils in soaked conditions. The predictive accuracy of the proposed models was evaluated via several statistical and graphical parameters. Separate statistical indices were employed to evaluate the generalization capabilities of the developed models. In addition, in the end, the best predictive model was determined using a novel tool called order analysis. The results of the study reveal that the proposed artificial neural network coupled with the gradient-based optimizer (ANN–GBO) model attained the most accurate prediction ( R 2  = 0. 997and R 2  = 0.956, during the training and testing phase) in predicting the soaked CBR. Based on the accuracies attained, the proposed ANN–GBO model has very potential to be an alternate solution to estimate the CBR value in different phases of civil engineering projects.
Author Ghani, Sufyan
Thapa, Ishwor
Author_xml – sequence: 1
  givenname: Ishwor
  surname: Thapa
  fullname: Thapa, Ishwor
  organization: Department of Civil Engineering, Sharda University
– sequence: 2
  givenname: Sufyan
  surname: Ghani
  fullname: Ghani, Sufyan
  email: Sufyan.ghani@sharda.ac.in
  organization: Department of Civil Engineering, Sharda University
BookMark eNp9kM9OAyEQh4mpibX2BTzxAquw7C7L0TT1T9LEi54JLNClbqEBatO3l22NBw-9MGRmvkl-3y2YOO80APcYPWCE6GOsMCOsQCUpECobVpArMC3rEhUtpmzy92_QDZjHuEF5i5KKtmgK4jImuxXJege9gQsxWOODswJKLYJ1axjGIcxN2NthyM-6P4hjhPs4ToX6Fq7TCvZHGayCIiRrbGfFAJ3eh1NJBx--oBjWPtjUb-MduDZiiHr-W2fg83n5sXgtVu8vb4unVdGVDKdCUc2wrCtZKaZyrLbuDEVtjTUWEsma1A1SRhjZdsRIo-qGNkyXomPGUNkaMgPl-W4XfIxBG74LOWs4coz4aI6fzfFsjp_McZKh9h_U2XTyk4Kww2WUnNG4G83pwDd-H1yOeIn6AfX-iH8
CitedBy_id crossref_primary_10_3389_fbuil_2024_1495472
crossref_primary_10_1007_s40808_024_02052_w
crossref_primary_10_1007_s40808_025_02512_x
crossref_primary_10_1007_s42947_024_00489_x
crossref_primary_10_1007_s40515_024_00372_z
crossref_primary_10_1007_s42107_025_01369_w
crossref_primary_10_1007_s42947_025_00558_9
crossref_primary_10_1080_17499518_2024_2395560
crossref_primary_10_1007_s12040_024_02374_4
crossref_primary_10_1007_s41939_024_00401_x
crossref_primary_10_1007_s40515_024_00391_w
crossref_primary_10_1007_s40808_024_02230_w
crossref_primary_10_1007_s42107_023_00982_x
crossref_primary_10_1007_s42107_023_00964_z
crossref_primary_10_1007_s42107_023_00966_x
crossref_primary_10_1007_s42107_023_00977_8
crossref_primary_10_1007_s43503_024_00039_1
crossref_primary_10_1007_s40808_024_02147_4
crossref_primary_10_1007_s10207_025_01104_1
crossref_primary_10_1016_j_conbuildmat_2024_138046
crossref_primary_10_1007_s12145_024_01688_7
crossref_primary_10_1007_s40515_024_00410_w
crossref_primary_10_1109_ACCESS_2025_3585272
Cites_doi 10.1016/j.earscirev.2022.103991
10.1007/978-981-19-6998-0_44
10.1016/j.jss.2007.05.005
10.1155/2022/8938836
10.1155/2023/8198648
10.1007/s13369-023-07962-y
10.3390/math11143064
10.1007/s12517-020-5273-4
10.3390/buildings13010255
10.1016/j.asoc.2021.107595
10.1007/s00521-015-1943-7
10.1007/978-981-19-6774-0_16
10.1007/s12594-020-1409-0
10.1007/978-3-030-26458-1_12
10.1007/s40996-023-01205-8
10.1007/s41939-022-00131-y
10.1016/j.matpr.2023.05.097
10.1016/j.eswa.2010.12.054
10.1007/s42107-023-00822-y
10.1016/j.asoc.2020.106738
10.1080/03052150410001647966
10.1007/s12517-022-10534-3
10.1007/s13369-019-03803-z
10.1029/2000JD900719
10.1007/s12517-020-5171-9
10.3390/ma15124330
10.3390/aerospace5010003
10.1016/j.asoc.2014.10.034
10.1007/s10706-018-0604-x
10.1007/s13369-020-04441-6
10.1007/s42947-022-00268-6
10.1007/s13369-022-06697-6
10.1016/j.cemconres.2021.106449
10.1016/j.enggeo.2021.106239
10.1016/j.advengsoft.2010.01.003
10.1007/s10706-013-9643-5
10.1007/s11440-022-01450-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s41939-023-00269-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2520-8179
EndPage 1144
ExternalDocumentID 10_1007_s41939_023_00269_3
GroupedDBID -EM
0R~
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEUYN
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c291t-d7e91b54b4d9d26985cf70851e1ab0b53560dfafb8c3fbfd56769e2ac9ff7b8f3
IEDL.DBID RSV
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001088444500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2520-8160
IngestDate Sat Nov 29 03:23:31 EST 2025
Tue Nov 18 22:28:57 EST 2025
Fri Feb 21 02:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Statistical parameters
California bearing ratio
Order analysis
Artificial intelligence
Gradient-based optimizer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-d7e91b54b4d9d26985cf70851e1ab0b53560dfafb8c3fbfd56769e2ac9ff7b8f3
PageCount 26
ParticipantIDs crossref_primary_10_1007_s41939_023_00269_3
crossref_citationtrail_10_1007_s41939_023_00269_3
springer_journals_10_1007_s41939_023_00269_3
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Multiscale and Multidisciplinary Modeling, Experiments and Design
PublicationTitleAbbrev Multiscale and Multidiscip. Model. Exp. and Des
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Amin, Iqbal, Ashfaq, Salami, Khan, Faraz, Alabdullah, Jalal (CR2) 2022
Erzin, Turkoz (CR14) 2016; 27
Prakash, Kumar, Rai (CR34) 2023
Yildirim, Gunaydin (CR44) 2011; 38
Bardhan, Singh, Ghani, Konstantakatos, Asteris (CR7) 2023; 11
Kassa, Wubineh (CR22) 2023; 2023
Nagaraju, Bahrami, Prasad, Mantena, Biswal, Islam (CR32) 2023; 13
Bardhan, Gokceoglu, Burman, Samui, Asteris (CR5) 2021; 291
Varghese, Babu, Bijukumar, Cyrus, Abraham (CR42) 2013; 31
Khatti, Grover (CR24) 2023
Ghani, Kumari, Jaiswal, Sawant (CR18) 2022; 15
Tenpe, Patel (CR40) 2020; 45
Taskiran (CR38) 2010; 41
Kim, Ordu, Arslan, Ko (CR27) 2023; 33
Raj Kiran, Ravi (CR35) 2008; 81
Ghani, Kumari, Ahmad (CR17) 2022; 47
Asteris, Skentou, Bardhan, Samui, Pilakoutas (CR3) 2021; 145
Khatti, Grover (CR26) 2023
Katte, Mfoyet, Manefouet, Wouatong, Bezeng (CR23) 2019; 37
Khatti, Grover (CR25) 2023; 6
Ghani, Kumari, Muthukkumaran-Kasinathan, Ayothiraman (CR16) 2023
Kumar, Gandhi, Bhattacharjya (CR30) 2020
Bardhan, Samui, Ghosh, Gandomi, Bhattacharyya (CR6) 2021; 110
Taylor (CR39) 2001; 106
Alam, Mondal, Shiuly (CR1) 2020; 95
Zhou, Zhu, Qiu, Armaghani, Zhou, Yong (CR45) 2022; 17
Verma, Kumar, Kumar, Ray, Khandelwal (CR43) 2023
CR29
CR28
Kurnaz, Kaya (CR31) 2020; 13
Vamsi Krishna, Sai Santosh, Sai Prasanth (CR41) 2023
Soltanali, Rohani, Abbaspour-Fard, Farinha (CR36) 2021; 98
Baghbani, Choudhury, Costa, Reiner (CR4) 2022; 228
Ceryan, Samui (CR11) 2020; 13
Dababneh, Kipouros, Whidborne (CR13) 2018
Coello Coello, Becerra (CR12) 2004; 36
Taha, Gabr, El-Badawy (CR37) 2019; 44
Bui, Al-Ansari, Le, Prakash, Pham (CR9) 2022
Ghani, Kumari, Choudhary (CR19) 2023
Huang, Ma, Wan, Chen (CR20) 2015; 27
S Prakash (269_CR34) 2023
TV Nagaraju (269_CR32) 2023; 13
B Yildirim (269_CR44) 2011; 38
SK Alam (269_CR1) 2020; 95
M Kim (269_CR27) 2023; 33
CA Coello Coello (269_CR12) 2004; 36
J Khatti (269_CR24) 2023
A Bardhan (269_CR7) 2023; 11
A Bardhan (269_CR6) 2021; 110
S Ghani (269_CR16) 2023
KE Taylor (269_CR39) 2001; 106
G Verma (269_CR43) 2023
J Khatti (269_CR25) 2023; 6
J Zhou (269_CR45) 2022; 17
N Ceryan (269_CR11) 2020; 13
VK Varghese (269_CR42) 2013; 31
M Huang (269_CR20) 2015; 27
269_CR28
O Dababneh (269_CR13) 2018
TF Kurnaz (269_CR31) 2020; 13
T Taskiran (269_CR38) 2010; 41
N Raj Kiran (269_CR35) 2008; 81
VY Katte (269_CR23) 2019; 37
S Taha (269_CR37) 2019; 44
SH Vamsi Krishna (269_CR41) 2023
A Baghbani (269_CR4) 2022; 228
PG Asteris (269_CR3) 2021; 145
S Ghani (269_CR18) 2022; 15
Y Erzin (269_CR14) 2016; 27
269_CR29
S Ghani (269_CR17) 2022; 47
D Kumar (269_CR30) 2020
H Soltanali (269_CR36) 2021; 98
SM Kassa (269_CR22) 2023; 2023
AR Tenpe (269_CR40) 2020; 45
S Ghani (269_CR19) 2023
MN Amin (269_CR2) 2022
A Bardhan (269_CR5) 2021; 291
QAT Bui (269_CR9) 2022
J Khatti (269_CR26) 2023
References_xml – volume: 228
  year: 2022
  ident: CR4
  article-title: Application of artificial intelligence in geotechnical engineering: A state-of-the-art review
  publication-title: Earth-Sci Rev
  doi: 10.1016/j.earscirev.2022.103991
– start-page: 515
  year: 2023
  end-page: 527
  ident: CR16
  article-title: Plasticity-based liquefaction prediction using support vector machine and adaptive neuro-fuzzy inference system
  publication-title: Soil dynamics, earthquake and computational geotechnical engineering
  doi: 10.1007/978-981-19-6998-0_44
– volume: 81
  start-page: 576
  issue: 4
  year: 2008
  end-page: 583
  ident: CR35
  article-title: Software reliability prediction by soft computing techniques
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2007.05.005
– year: 2022
  ident: CR9
  article-title: Hybrid model: teaching learning-based optimization of artificial neural network (TLBO-ANN) for the prediction of soil permeability coefficient
  publication-title: Math Probl Eng
  doi: 10.1155/2022/8938836
– volume: 2023
  start-page: 1
  year: 2023
  end-page: 11
  ident: CR22
  article-title: Use of machine learning to predict california bearing ratio of soils
  publication-title: Adv Civ Eng
  doi: 10.1155/2023/8198648
– year: 2023
  ident: CR43
  article-title: Application of KRR, K-NN and GPR algorithms for predicting the soaked CBR of fine-grained plastic soils
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-023-07962-y
– volume: 11
  start-page: 3064
  issue: 14
  year: 2023
  ident: CR7
  article-title: Modelling soil compaction parameters using an enhanced hybrid intelligence paradigm of ANFIS and improved grey wolf optimiser
  publication-title: Mathematics
  doi: 10.3390/math11143064
– volume: 13
  start-page: 288
  issue: 7
  year: 2020
  ident: CR11
  article-title: Application of soft computing methods in predicting uniaxial compressive strength of the volcanic rocks with different weathering degree
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-5273-4
– volume: 13
  start-page: 255
  issue: 1
  year: 2023
  ident: CR32
  article-title: Predicting California bearing ratio of lateritic soils using hybrid machine learning technique
  publication-title: Buildings
  doi: 10.3390/buildings13010255
– volume: 110
  year: 2021
  ident: CR6
  article-title: ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107595
– volume: 27
  start-page: 1415
  issue: 5
  year: 2016
  end-page: 1426
  ident: CR14
  article-title: Use of neural networks for the prediction of the CBR value of some Aegean sands
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1943-7
– start-page: 171
  year: 2023
  end-page: 185
  ident: CR26
  publication-title: Relationship between index properties and CBR of soil and prediction of CBR
  doi: 10.1007/978-981-19-6774-0_16
– ident: CR29
– volume: 95
  start-page: 190
  issue: 2
  year: 2020
  end-page: 196
  ident: CR1
  article-title: Prediction of CBR value of fine grained soils of Bengal Basin by genetic expression programming, artificial neural network and krigging method
  publication-title: J Geol Soc India
  doi: 10.1007/s12594-020-1409-0
– start-page: 203
  year: 2020
  end-page: 214
  ident: CR30
  publication-title: Introduction to invasive weed optimization method
  doi: 10.1007/978-3-030-26458-1_12
– year: 2023
  ident: CR19
  article-title: Geocell mattress reinforcement for bottom ash: a comprehensive study of load-settlement characteristics
  publication-title: Iran J Sci Technol Trans Civ Eng
  doi: 10.1007/s40996-023-01205-8
– volume: 6
  start-page: 97
  issue: 1
  year: 2023
  end-page: 121
  ident: CR25
  article-title: Prediction of soaked CBR of fine-grained soils using soft computing techniques
  publication-title: Multiscale Multidiscip Model Exp Des
  doi: 10.1007/s41939-022-00131-y
– year: 2023
  ident: CR41
  article-title: Prediction of UCS and CBR of a stabilized Black-cotton soil using artificial intelligence approach: ANN
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2023.05.097
– volume: 38
  start-page: 6381
  issue: 5
  year: 2011
  end-page: 6391
  ident: CR44
  article-title: Estimation of California bearing ratio by using soft computing systems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.12.054
– year: 2023
  ident: CR34
  article-title: A new technique based on the gorilla troop optimization coupled with artificial neural network for predicting the compressive strength of ultrahigh performance concrete
  publication-title: Asian J Civ Eng
  doi: 10.1007/s42107-023-00822-y
– volume: 98
  year: 2021
  ident: CR36
  article-title: A comparative study of statistical and soft computing techniques for reliability prediction of automotive manufacturing
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106738
– volume: 36
  start-page: 219
  issue: 2
  year: 2004
  end-page: 236
  ident: CR12
  article-title: Efficient evolutionary optimization through the use of a cultural algorithm
  publication-title: Eng Optim
  doi: 10.1080/03052150410001647966
– volume: 15
  start-page: 1262
  issue: 14
  year: 2022
  ident: CR18
  article-title: Comparative and parametric study of AI-based models for risk assessment against soil liquefaction for high-intensity earthquakes
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-022-10534-3
– volume: 44
  start-page: 8691
  issue: 10
  year: 2019
  end-page: 8705
  ident: CR37
  article-title: Regression and neural network models for california bearing ratio prediction of typical granular materials in Egypt
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-019-03803-z
– volume: 106
  start-page: 7183
  issue: D7
  year: 2001
  end-page: 7192
  ident: CR39
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2000JD900719
– volume: 13
  start-page: 159
  issue: 4
  year: 2020
  ident: CR31
  article-title: The performance comparison of the soft computing methods on the prediction of soil compaction parameters
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-5171-9
– year: 2022
  ident: CR2
  article-title: Prediction of strength and CBR characteristics of chemically stabilized coal gangue: ANN and random forest tree approach
  publication-title: Materials
  doi: 10.3390/ma15124330
– year: 2018
  ident: CR13
  article-title: Application of an efficient gradient-based optimization strategy for aircraft wing structures
  publication-title: Aerospace
  doi: 10.3390/aerospace5010003
– volume: 27
  start-page: 1
  year: 2015
  end-page: 10
  ident: CR20
  article-title: A sensor-software based on a genetic algorithm-based neural fuzzy system for modeling and simulating a wastewater treatment process
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.10.034
– volume: 37
  start-page: 217
  issue: 1
  year: 2019
  end-page: 234
  ident: CR23
  article-title: Correlation of California bearing ratio (CBR) value with soil properties of road subgrade soil
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0604-x
– volume: 45
  start-page: 4301
  issue: 5
  year: 2020
  end-page: 4319
  ident: CR40
  article-title: Utilization of support vector models and gene expression programming for soil strength modeling
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-020-04441-6
– year: 2023
  ident: CR24
  article-title: CBR prediction of pavement materials in unsoaked condition using LSSVM, LSTM-RNN, and ANN approaches
  publication-title: Int J Pavement Res Technol
  doi: 10.1007/s42947-022-00268-6
– volume: 47
  start-page: 5411
  issue: 4
  year: 2022
  end-page: 5441
  ident: CR17
  article-title: Prediction of the seismic effect on liquefaction behavior of fine-grained soils using artificial intelligence-based hybridized modeling
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-022-06697-6
– volume: 33
  start-page: 183
  issue: 2
  year: 2023
  end-page: 194
  ident: CR27
  article-title: Prediction of California bearing ratio (CBR) for coarse- and fine-grained soils using the GMDH-model
  publication-title: Geomech Eng
– volume: 145
  year: 2021
  ident: CR3
  article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2021.106449
– volume: 291
  year: 2021
  ident: CR5
  article-title: Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2021.106239
– ident: CR28
– volume: 41
  start-page: 886
  issue: 6
  year: 2010
  end-page: 892
  ident: CR38
  article-title: Prediction of California bearing ratio (CBR) of fine grained soils by AI methods
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2010.01.003
– volume: 31
  start-page: 1187
  issue: 4
  year: 2013
  end-page: 1205
  ident: CR42
  article-title: Artificial neural networks: a solution to the ambiguity in prediction of engineering properties of fine-grained soils
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-013-9643-5
– volume: 17
  start-page: 1343
  issue: 4
  year: 2022
  end-page: 1366
  ident: CR45
  article-title: Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm
  publication-title: Acta Geotech
  doi: 10.1007/s11440-022-01450-7
– volume: 145
  year: 2021
  ident: 269_CR3
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2021.106449
– volume: 44
  start-page: 8691
  issue: 10
  year: 2019
  ident: 269_CR37
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-019-03803-z
– volume: 13
  start-page: 288
  issue: 7
  year: 2020
  ident: 269_CR11
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-5273-4
– volume: 110
  year: 2021
  ident: 269_CR6
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107595
– ident: 269_CR28
– year: 2022
  ident: 269_CR2
  publication-title: Materials
  doi: 10.3390/ma15124330
– volume: 98
  year: 2021
  ident: 269_CR36
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106738
– volume: 41
  start-page: 886
  issue: 6
  year: 2010
  ident: 269_CR38
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2010.01.003
– volume: 37
  start-page: 217
  issue: 1
  year: 2019
  ident: 269_CR23
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0604-x
– volume: 95
  start-page: 190
  issue: 2
  year: 2020
  ident: 269_CR1
  publication-title: J Geol Soc India
  doi: 10.1007/s12594-020-1409-0
– year: 2023
  ident: 269_CR34
  publication-title: Asian J Civ Eng
  doi: 10.1007/s42107-023-00822-y
– volume: 33
  start-page: 183
  issue: 2
  year: 2023
  ident: 269_CR27
  publication-title: Geomech Eng
– volume: 81
  start-page: 576
  issue: 4
  year: 2008
  ident: 269_CR35
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2007.05.005
– volume: 6
  start-page: 97
  issue: 1
  year: 2023
  ident: 269_CR25
  publication-title: Multiscale Multidiscip Model Exp Des
  doi: 10.1007/s41939-022-00131-y
– year: 2023
  ident: 269_CR43
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-023-07962-y
– volume: 2023
  start-page: 1
  year: 2023
  ident: 269_CR22
  publication-title: Adv Civ Eng
  doi: 10.1155/2023/8198648
– volume: 38
  start-page: 6381
  issue: 5
  year: 2011
  ident: 269_CR44
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.12.054
– year: 2022
  ident: 269_CR9
  publication-title: Math Probl Eng
  doi: 10.1155/2022/8938836
– volume: 27
  start-page: 1415
  issue: 5
  year: 2016
  ident: 269_CR14
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1943-7
– volume: 36
  start-page: 219
  issue: 2
  year: 2004
  ident: 269_CR12
  publication-title: Eng Optim
  doi: 10.1080/03052150410001647966
– volume: 13
  start-page: 159
  issue: 4
  year: 2020
  ident: 269_CR31
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-5171-9
– ident: 269_CR29
– start-page: 171
  volume-title: Relationship between index properties and CBR of soil and prediction of CBR
  year: 2023
  ident: 269_CR26
  doi: 10.1007/978-981-19-6774-0_16
– volume: 17
  start-page: 1343
  issue: 4
  year: 2022
  ident: 269_CR45
  publication-title: Acta Geotech
  doi: 10.1007/s11440-022-01450-7
– year: 2023
  ident: 269_CR19
  publication-title: Iran J Sci Technol Trans Civ Eng
  doi: 10.1007/s40996-023-01205-8
– volume: 15
  start-page: 1262
  issue: 14
  year: 2022
  ident: 269_CR18
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-022-10534-3
– volume: 13
  start-page: 255
  issue: 1
  year: 2023
  ident: 269_CR32
  publication-title: Buildings
  doi: 10.3390/buildings13010255
– volume: 31
  start-page: 1187
  issue: 4
  year: 2013
  ident: 269_CR42
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-013-9643-5
– volume: 291
  year: 2021
  ident: 269_CR5
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2021.106239
– year: 2023
  ident: 269_CR24
  publication-title: Int J Pavement Res Technol
  doi: 10.1007/s42947-022-00268-6
– year: 2018
  ident: 269_CR13
  publication-title: Aerospace
  doi: 10.3390/aerospace5010003
– volume: 45
  start-page: 4301
  issue: 5
  year: 2020
  ident: 269_CR40
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-020-04441-6
– volume: 27
  start-page: 1
  year: 2015
  ident: 269_CR20
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.10.034
– start-page: 515
  volume-title: Soil dynamics, earthquake and computational geotechnical engineering
  year: 2023
  ident: 269_CR16
  doi: 10.1007/978-981-19-6998-0_44
– volume: 228
  year: 2022
  ident: 269_CR4
  publication-title: Earth-Sci Rev
  doi: 10.1016/j.earscirev.2022.103991
– volume: 11
  start-page: 3064
  issue: 14
  year: 2023
  ident: 269_CR7
  publication-title: Mathematics
  doi: 10.3390/math11143064
– volume: 47
  start-page: 5411
  issue: 4
  year: 2022
  ident: 269_CR17
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-022-06697-6
– start-page: 203
  volume-title: Introduction to invasive weed optimization method
  year: 2020
  ident: 269_CR30
  doi: 10.1007/978-3-030-26458-1_12
– volume: 106
  start-page: 7183
  issue: D7
  year: 2001
  ident: 269_CR39
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2000JD900719
– year: 2023
  ident: 269_CR41
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2023.05.097
SSID ssj0002734780
ssib042110740
Score 2.380693
Snippet California bearing ratio (CBR) is one of the important parameters that is used to express the strength of the pavement subgrade of railways, roadways, and...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1119
SubjectTerms Characterization and Evaluation of Materials
Engineering
Mathematical Applications in the Physical Sciences
Mechanical Engineering
Numerical and Computational Physics
Original Paper
Simulation
Solid Mechanics
Title Estimation of California bearing ratio for hill highways using advanced hybrid artificial neural network algorithms
URI https://link.springer.com/article/10.1007/s41939-023-00269-3
Volume 7
WOSCitedRecordID wos001088444500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2520-8179
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734780
  issn: 2520-8160
  databaseCode: RSV
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejBb3F-kYM3LTRp0iZHkQ0PMsQvditJ2myTucpahf33Jmk6HchAT4XwGtrXl-a9vPf7PQAuUEaZJBQHgikToGSIBgJbIlcc6hjJOIyoAwrfJb0e6_f5vQeFlU21e5OSdH_qOdiNGF-Dm0miwAYOPIhWwZrZ7pht2PDw-NJYEXEhjWcwefUELolroYapiZUYikOPnvl92sUdajE96nad7vb_nncHbHkvE17XZrELVvLJHtj8wT24D8qOWdw1bhEWGn5jtKA0xm9EoLMNaAahzRhAR2wsZiW0pfID2BQPwOHMgr6gNcGajQJajkx3cRXmUIwHxXRUDd_KA_Dc7Tzd3Aa-A0OgMEdVkCU5R5ISSTKemXdgVOnEOmk5EjKUNDL-UqaFlkxFWuqM2oLZHAtlT4Il09EhaE2KSX4EIBdICI3jPJGS8ERypkRMmBljQjJB2gA1Wk-Vpye3XTLG6ZxY2Sk0NQpNnULTqA0u5_e81-QcS6Wvmg-V-oVaLhE__pv4CdjAxt-pq8hOQauafuRnYF19VqNyeu4s9AsgKOAL
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BfXBb3F-5sE3LSxp0iaPIhsT5xCdsreStM02mZusVdh_b5Km04EM9KkQrqG9Xpq73P1-B8AFSiiThGJPsFgHKAminsCGyBXXVIBkUPOpBQq3wnabdbv8wYHCsrLavUxJ2j_1DOxGtK_B9SS-ZwIH7vnLYIXoHcsw5j8-vZRWRGxI4xhMXh2BS2hbqGGqYyWGgppDz_w-7fwONZ8etbtOY-t_z7sNNp2XCa8Ls9gBS-loF2z84B7cA1ldL-4CtwjHCn5jtKDUxq9FoLUNqAehyRhAS2wsphk0pfI9WBYPwP7UgL6gMcGCjQIajkx7sRXmUAx748kg779l--C5Ue_cND3XgcGLMUe5l4QpR5ISSRKe6HdgNFahcdJSJGRNUl_7S4kSSrLYV1Il1BTMpljE5iRYMuUfgMpoPEoPAeQCCaFwkIZSEh5KzmIREKbHmJBMkCpApdaj2NGTmy4Zw2hGrGwVGmmFRlahkV8Fl7N73gtyjoXSV-WHitxCzRaIH_1N_BysNTv3rah12747ButY-z5FRdkJqOSTj_QUrMaf-SCbnFlr_QKpN-Lv
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzivefBNy5o0aZNH0Q3FMQZe2FtJ2mabzG2sVdi_N0nbuYEMxKdCOAltckLO6fm-LwBcoZgySSh2BIt0ghIj6ghshFyxq3wkfdejlijcDFot1unw9hyL36Ldy5JkzmkwKk3DrDaOVW1GfCM67uB6QM8xSQR3vFWwRgyQ3uTrz2-lRxGb3hRqJu-FmEtgr1PDVOdNDPluwaT5fdjF02qxVGpPoMbO_999F2wX0Se8zd1lD6wkw32wNadJeADSut70OZ8RjhT84W5BqTeFNoHWZ6BuhKaSAK3gsZim0EDou7AEFcDe1JDBoHHNXKUCGu1M-7DIcygG3dGkn_U-0kPw2qi_3D04xc0MToQ5ypw4SDiSlEgS81h_A6ORCkzwliAhXUk9HUfFSijJIk9JFVMDpE2wiMwfYsmUdwQqw9EwOQaQCySEwn4SSEl4IDmLhE-YbmNCMkGqAJUrEEaFbLm5PWMQzgSX7YSGekJDO6GhVwXXsz7jXLRjqfVNuWhhsYHTJeYnfzO_BBvt-0bYfGw9nYJNrEOiHGh2BirZ5DM5B-vRV9ZPJxfWcb8BJDHr0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+California+bearing+ratio+for+hill+highways+using+advanced+hybrid+artificial+neural+network+algorithms&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Thapa%2C+Ishwor&rft.au=Ghani%2C+Sufyan&rft.date=2024-06-01&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=7&rft.issue=2&rft.spage=1119&rft.epage=1144&rft_id=info:doi/10.1007%2Fs41939-023-00269-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41939_023_00269_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon