Intelligent Early Warning of Power System Dynamic Insecurity Risk: Toward Optimal Accuracy-Earliness Tradeoff

Dynamic insecurity risk of a power system has been increasingly concerned due to the integration of stochastic renewable power sources (such as wind and solar power) and complicated demand response. In this paper, an intelligent early-warning system to achieve reliable online detection of risky oper...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial informatics Ročník 13; číslo 5; s. 2544 - 2554
Hlavní autoři: Zhang, Yuchen, Xu, Yan, Dong, Zhao Yang, Xu, Zhao, Wong, Kit Po
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1551-3203, 1941-0050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Dynamic insecurity risk of a power system has been increasingly concerned due to the integration of stochastic renewable power sources (such as wind and solar power) and complicated demand response. In this paper, an intelligent early-warning system to achieve reliable online detection of risky operating conditions is proposed. The proposed intelligent system (IS) consists of an ensemble learning model based on extreme learning machine (ELM) and a decision-making process under a multiobjective programming framework. Taking an ensemble form, the randomness existing in individual ELM training is generalized and reliable classification results can be obtained. The decision making is designed for ELM ensemble whose parameters are optimized to search for the optimal tradeoff between the warning accuracy and the warning earliness of the proposed IS. The compromise solution turns out to significantly speed up the overall computation with an acceptable sacrifice in the accuracy (e.g., from 100% to 99.9%). More importantly, the proposed IS can provide multiple and switchable performances to the operators in order to satisfy different local dynamic security assessment requirements.
AbstractList Dynamic insecurity risk of a power system has been increasingly concerned due to the integration of stochastic renewable power sources (such as wind and solar power) and complicated demand response. In this paper, an intelligent early-warning system to achieve reliable online detection of risky operating conditions is proposed. The proposed intelligent system (IS) consists of an ensemble learning model based on extreme learning machine (ELM) and a decision-making process under a multiobjective programming framework. Taking an ensemble form, the randomness existing in individual ELM training is generalized and reliable classification results can be obtained. The decision making is designed for ELM ensemble whose parameters are optimized to search for the optimal tradeoff between the warning accuracy and the warning earliness of the proposed IS. The compromise solution turns out to significantly speed up the overall computation with an acceptable sacrifice in the accuracy (e.g., from 100% to 99.9%). More importantly, the proposed IS can provide multiple and switchable performances to the operators in order to satisfy different local dynamic security assessment requirements.
Author Kit Po Wong
Zhao Xu
Zhao Yang Dong
Yuchen Zhang
Yan Xu
Author_xml – sequence: 1
  givenname: Yuchen
  surname: Zhang
  fullname: Zhang, Yuchen
– sequence: 2
  givenname: Yan
  surname: Xu
  fullname: Xu, Yan
– sequence: 3
  givenname: Zhao Yang
  surname: Dong
  fullname: Dong, Zhao Yang
– sequence: 4
  givenname: Zhao
  surname: Xu
  fullname: Xu, Zhao
– sequence: 5
  givenname: Kit Po
  surname: Wong
  fullname: Wong, Kit Po
BookMark eNp9kM9LwzAUx4Mo-PMueAl47kyatkm8DZ1aGCg68VjS9FWiXTKTjNH_3oyJBw-e3oP3_cH7HKN96ywgdE7JhFIirxZ1PckJ5ZO84pXgcg8dUVnQjJCS7Ke9LGnGcsIO0XEIH4QwTpg8QsvaRhgG8w424pnyw4jflLfGvmPX4ye3AY9fxhBhiW9Hq5ZG49oG0Gtv4oifTfi8xgu3Ub7Dj6tolmrAU52uSo_ZNs5YCAEvvOrA9f0pOujVEODsZ56g17vZ4uYhmz_e1zfTeaZzSWPWVb1QSvOiV5ToTpKuBdmCKIQmULVQ6VKBoEqmQXLGOlAtFV3LdQGCl5qdoMtd7sq7rzWE2Hy4tbepsklQeFnwPC-SiuxU2rsQPPTNyqcP_NhQ0myhNglqs4Xa_EBNluqPRZuoonE2emWG_4wXO6MBgN8eLirJhGDfaviIjQ
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2991534
crossref_primary_10_1109_TPWRD_2019_2912267
crossref_primary_10_1109_TPWRS_2024_3502201
crossref_primary_10_1109_JIOT_2023_3321793
crossref_primary_10_3390_en15249655
crossref_primary_10_1109_ACCESS_2022_3232526
crossref_primary_10_1186_s42162_018_0007_5
crossref_primary_10_1016_j_ijepes_2024_110082
crossref_primary_10_1049_iet_gtd_2017_1168
crossref_primary_10_1016_j_segan_2024_101350
crossref_primary_10_1016_j_ijepes_2021_107021
crossref_primary_10_1049_gtd2_12147
crossref_primary_10_18267_j_aip_246
crossref_primary_10_1109_TPWRS_2019_2926243
crossref_primary_10_1109_TPWRS_2025_3532124
crossref_primary_10_1016_j_ijepes_2021_107380
crossref_primary_10_1109_TSG_2019_2941565
crossref_primary_10_1016_j_rineng_2025_104172
crossref_primary_10_1007_s00607_019_00781_w
crossref_primary_10_1109_TPWRS_2021_3071918
crossref_primary_10_1007_s10845_020_01631_9
crossref_primary_10_1109_ACCESS_2022_3193506
crossref_primary_10_1016_j_ijepes_2021_107651
crossref_primary_10_1016_j_apenergy_2020_115733
crossref_primary_10_3390_app9204216
crossref_primary_10_1049_iet_gtd_2019_1371
crossref_primary_10_4018_IJITSA_326933
crossref_primary_10_1109_TII_2020_3016590
crossref_primary_10_1109_TII_2023_3278873
crossref_primary_10_32604_ee_2023_026816
crossref_primary_10_1007_s10462_024_10993_y
crossref_primary_10_1016_j_egyr_2022_02_243
crossref_primary_10_1049_gtd2_12111
crossref_primary_10_3390_en15239240
crossref_primary_10_1016_j_apenergy_2021_118221
crossref_primary_10_1109_JPROC_2020_2988715
crossref_primary_10_1016_j_ijepes_2021_107403
crossref_primary_10_1049_tje2_12400
crossref_primary_10_1109_TII_2019_2940098
crossref_primary_10_1109_JIOT_2022_3202267
crossref_primary_10_1016_j_ijepes_2020_106237
crossref_primary_10_1016_j_ijepes_2020_106316
crossref_primary_10_1061__ASCE_EY_1943_7897_0000619
crossref_primary_10_1109_TSTE_2022_3153843
crossref_primary_10_1142_S0218126624502347
crossref_primary_10_3390_e19100552
crossref_primary_10_3390_app11219820
crossref_primary_10_1049_iet_gtd_2018_6241
crossref_primary_10_1109_JETCAS_2023_3293253
crossref_primary_10_1109_TPWRS_2023_3260871
crossref_primary_10_1109_TSG_2021_3133604
crossref_primary_10_1109_TII_2024_3431034
crossref_primary_10_1109_ACCESS_2019_2923799
crossref_primary_10_3389_fenrg_2023_1281368
crossref_primary_10_1016_j_apenergy_2020_114586
crossref_primary_10_1016_j_eswa_2024_123985
crossref_primary_10_1049_iet_gtd_2020_0612
crossref_primary_10_1016_j_egyai_2025_100618
crossref_primary_10_1109_ACCESS_2020_2969039
crossref_primary_10_1109_TII_2018_2829818
crossref_primary_10_1049_iet_gtd_2019_1198
crossref_primary_10_1061__ASCE_EY_1943_7897_0000604
crossref_primary_10_1186_s41601_018_0091_3
crossref_primary_10_1109_TSG_2020_2991335
crossref_primary_10_1109_JIOT_2023_3308170
crossref_primary_10_1088_1742_6596_1865_2_022027
crossref_primary_10_1016_j_segan_2022_100674
crossref_primary_10_2478_amns_2024_3024
crossref_primary_10_2478_amns_2024_2214
Cites_doi 10.1109/TPWRS.2004.825981
10.1109/TPWRS.2007.901667
10.1109/PES.2006.1709418
10.1109/TPWRS.2015.2438322
10.1111/j.0824-7935.2004.t01-1-00228.x
10.1109/59.962423
10.1109/TNN.2006.880583
10.1109/TII.2012.2206396
10.1007/s13042-011-0019-y
10.1007/978-1-4615-4319-0
10.1016/j.neucom.2005.12.126
10.1049/iet-gtd.2009.0701
10.1016/B978-1-55860-247-2.50037-1
10.1049/iet-gtd.2009.0255
10.1109/TPWRS.2007.908476
10.1109/TSMCB.2011.2168604
10.1109/TPWRS.2008.926431
10.1109/TPWRS.2013.2266617
10.1109/TSG.2010.2052935
10.1080/00222895.1995.9941714
10.1016/S0004-3702(02)00190-X
10.1109/TNN.2006.875977
10.1109/TPWRS.2012.2183899
10.1109/PES.2006.1709501
10.1023/A:1025667309714
10.1109/34.58871
10.1109/TPWRS.2013.2259641
10.1049/iet-gtd.2010.0355
10.1109/TSG.2010.2053855
10.1109/TPWRS.2013.2287871
10.1109/TEVC.2007.913121
10.1109/MIS.2011.41
10.1109/59.932291
10.1109/TPWRS.2007.913298
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2017.2676879
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 2554
ExternalDocumentID 10_1109_TII_2017_2676879
7869388
Genre orig-research
GrantInformation_xml – fundername: Nanyang Assistant Professorship from Nanyang Technological University, Singapore
– fundername: Faculty of Engineering and Information Technologies, University of Sydney, under the Faculty Research Cluster Program
– fundername: Australian Postgraduate Award
– fundername: China Southern Power Grid Company
  grantid: WYKJ00000027
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-d6f8aac74fa10cd90dbe9be848c0e6be6c5ae81a95ae0233deab18db7c4e875c3
IEDL.DBID RIE
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412361900043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:12:49 EDT 2025
Sat Nov 29 04:39:48 EST 2025
Tue Nov 18 21:00:59 EST 2025
Tue Aug 26 17:08:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-d6f8aac74fa10cd90dbe9be848c0e6be6c5ae81a95ae0233deab18db7c4e875c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1947547224
PQPubID 85507
PageCount 11
ParticipantIDs proquest_journals_1947547224
ieee_primary_7869388
crossref_primary_10_1109_TII_2017_2676879
crossref_citationtrail_10_1109_TII_2017_2676879
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref36
ref14
ref31
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref24
ref23
ref26
ref25
ref20
beyer (ref18) 2012
ref22
ref21
miettinen (ref29) 1999
zhang (ref30) 0
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
han (ref33) 2001
xu (ref15) 0
ref40
seyedi (ref37) 2009
References_xml – ident: ref3
  doi: 10.1109/TPWRS.2004.825981
– ident: ref12
  doi: 10.1109/TPWRS.2007.901667
– year: 2012
  ident: ref18
  publication-title: The Importance of 'Big Data' A Definition
– ident: ref7
  doi: 10.1109/PES.2006.1709418
– ident: ref21
  doi: 10.1109/TPWRS.2015.2438322
– ident: ref38
  doi: 10.1111/j.0824-7935.2004.t01-1-00228.x
– start-page: 1
  year: 0
  ident: ref15
  article-title: Transient stability assessment based on data-structure analysis of operating point space
  publication-title: Proc IEEE Power Eng Soc Gen Meet
– ident: ref6
  doi: 10.1109/59.962423
– ident: ref23
  doi: 10.1109/TNN.2006.880583
– ident: ref2
  doi: 10.1109/TII.2012.2206396
– ident: ref25
  doi: 10.1007/s13042-011-0019-y
– ident: ref39
  doi: 10.1007/978-1-4615-4319-0
– ident: ref22
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref36
  doi: 10.1049/iet-gtd.2009.0701
– ident: ref31
  doi: 10.1016/B978-1-55860-247-2.50037-1
– ident: ref13
  doi: 10.1049/iet-gtd.2009.0255
– ident: ref8
  doi: 10.1109/TPWRS.2007.908476
– ident: ref26
  doi: 10.1109/TSMCB.2011.2168604
– ident: ref19
  doi: 10.1109/TPWRS.2008.926431
– ident: ref9
  doi: 10.1109/TPWRS.2013.2266617
– ident: ref11
  doi: 10.1109/TSG.2010.2052935
– ident: ref40
  doi: 10.1080/00222895.1995.9941714
– year: 2001
  ident: ref33
  publication-title: Data Mining Concepts and Techniques
– ident: ref27
  doi: 10.1016/S0004-3702(02)00190-X
– start-page: 1
  year: 0
  ident: ref30
  article-title: A good point set-based knowledgebase generation scheme for power system intelligent dynamic security assessment
  publication-title: Proc Int Conf Adv Power Syst Control Oper Manage
– ident: ref24
  doi: 10.1109/TNN.2006.875977
– ident: ref16
  doi: 10.1109/TPWRS.2012.2183899
– ident: ref4
  doi: 10.1109/PES.2006.1709501
– ident: ref32
  doi: 10.1023/A:1025667309714
– ident: ref28
  doi: 10.1109/34.58871
– ident: ref35
  doi: 10.1109/TPWRS.2013.2259641
– ident: ref14
  doi: 10.1049/iet-gtd.2010.0355
– ident: ref17
  doi: 10.1109/TSG.2010.2053855
– ident: ref20
  doi: 10.1109/TPWRS.2013.2287871
– year: 1999
  ident: ref29
  publication-title: Nonlinear Multiobjective Optimization
– year: 2009
  ident: ref37
  article-title: Evaluation of the DFIG wind turbine built-in model in PSS/E
– ident: ref34
  doi: 10.1109/TEVC.2007.913121
– ident: ref5
  doi: 10.1109/MIS.2011.41
– ident: ref10
  doi: 10.1109/59.932291
– ident: ref1
  doi: 10.1109/TPWRS.2007.913298
SSID ssj0037039
Score 2.4963152
Snippet Dynamic insecurity risk of a power system has been increasingly concerned due to the integration of stochastic renewable power sources (such as wind and solar...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2544
SubjectTerms Accuracy
Computational modeling
Decision making
Dynamic insecurity risk
early warning
Early warning systems
Electronic mail
extreme learning machine (ELM)
intelligent system (IS)
Mathematical programming
multiobjective programming (MOP)
Multiple objective analysis
Neural networks
On-line systems
Power sources
Power system dynamics
Power system stability
Randomness
Reliability
Solar generators
Tradeoffs
Training
Title Intelligent Early Warning of Power System Dynamic Insecurity Risk: Toward Optimal Accuracy-Earliness Tradeoff
URI https://ieeexplore.ieee.org/document/7869388
https://www.proquest.com/docview/1947547224
Volume 13
WOSCitedRecordID wos000412361900043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFD6o9ME-qFWLq7bkoS9C42Y2mVx8E6t0oVgp2-rbkMsJSOuuuKvgvzfJzC6CIvRpBiYnM-Q7k5PLyfcBfBEsCsNqR6OKjGZCOepMHaiVVkspnKsKpdCfH-r8XF9dmYsl-Lo4C4OIJfkMD_Nt2csPE3-fl8r6SkvDtV6GZaVUe1Zr3uvy5LmmcKPWFeUDxudbksz0R8NhzuFShwOZBtc5aetZCCqaKi864hJdztb_77s2YK0bRZLjFvYPsITjTXj_jFtwC26GC7LNGSk0xuSyXQUhk0gusjgaaenKybdWlZ4Mx9NOzY78up7-PSKjklNLfqZu5Sa_zqen1j_SXF1Jlycp1AWcxLgNv89ORyffaaetQP3AVDMaZNTWeiWirZgPhgWHxqEW2jOUDqWvLerKmnRJYZ0HtK7SwSkvME1xPP8IK-PJGHeABCmwGA-qKGruDQY0Ohqe2ilw5nrQnzd34zvi8ax_8a8pExBmmgRQkwFqOoB6cLCwuG1JN94ou5UBWZTrsOjB_hzRpvsrp01lkjNmdkyx-7rVHqzmuttkvX1Ymd3d4yd45x9m19O7z8XhngAWTNZS
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UKqgP9VLFtVXz4Itguskkk0l8K9XSwXUtsmrfhlxOoGh3pbsV_PcmmdmloAg-zcDkTIZ8Z3JyOfk-gJeSRWlY7WhsIqOZUI46UwdqldVKSed4oRT6MmmmU312Zk634PXmLAwiluQzPMi3ZS8_LPxVXiobN1oZofUNuFlLWfH-tNa63xXJd01hR605FRUT601JZsazts1ZXM1BpdLwOqdtXQtCRVXlj664xJfje__3ZfdhZxhHksMe-AewhfOHcPcau-AuXLQbus0VKUTG5Gu_DkIWkZxmeTTSE5aTt70uPWnny0HPjnw6X357Q2Ylq5Z8TB3LRa7Op6fW_6L5dSVhnqRgF3AR4yP4fPxudnRCB3UF6ivDVzSoqK31jYyWMx8MCw6NQy21Z6gcKl9b1NyadEmBXQS0juvgGi8xTXK8eAzb88UcnwAJSmIxrniUtfAGAxodjUjtFARzIxivm7vzA_V4VsD43pUpCDNdAqjLAHUDQCN4tbH40dNu_KPsbgZkU27AYgT7a0S74b9cdtwkd8z8mPLp361ewO2T2YdJN2mn7_fgTq6nT93bh-3V5RU-g1v-5-p8efm8ON9vX6jZmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Early+Warning+of+Power+System+Dynamic+Insecurity+Risk%3A+Toward+Optimal+Accuracy-Earliness+Tradeoff&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Zhang%2C+Yuchen&rft.au=Xu%2C+Yan&rft.au=Zhao+Yang+Dong&rft.au=Zhao%2C+Xu&rft.date=2017-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=13&rft.issue=5&rft.spage=2544&rft_id=info:doi/10.1109%2FTII.2017.2676879&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon