Intelligent Early Warning of Power System Dynamic Insecurity Risk: Toward Optimal Accuracy-Earliness Tradeoff
Dynamic insecurity risk of a power system has been increasingly concerned due to the integration of stochastic renewable power sources (such as wind and solar power) and complicated demand response. In this paper, an intelligent early-warning system to achieve reliable online detection of risky oper...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial informatics Ročník 13; číslo 5; s. 2544 - 2554 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Dynamic insecurity risk of a power system has been increasingly concerned due to the integration of stochastic renewable power sources (such as wind and solar power) and complicated demand response. In this paper, an intelligent early-warning system to achieve reliable online detection of risky operating conditions is proposed. The proposed intelligent system (IS) consists of an ensemble learning model based on extreme learning machine (ELM) and a decision-making process under a multiobjective programming framework. Taking an ensemble form, the randomness existing in individual ELM training is generalized and reliable classification results can be obtained. The decision making is designed for ELM ensemble whose parameters are optimized to search for the optimal tradeoff between the warning accuracy and the warning earliness of the proposed IS. The compromise solution turns out to significantly speed up the overall computation with an acceptable sacrifice in the accuracy (e.g., from 100% to 99.9%). More importantly, the proposed IS can provide multiple and switchable performances to the operators in order to satisfy different local dynamic security assessment requirements. |
|---|---|
| AbstractList | Dynamic insecurity risk of a power system has been increasingly concerned due to the integration of stochastic renewable power sources (such as wind and solar power) and complicated demand response. In this paper, an intelligent early-warning system to achieve reliable online detection of risky operating conditions is proposed. The proposed intelligent system (IS) consists of an ensemble learning model based on extreme learning machine (ELM) and a decision-making process under a multiobjective programming framework. Taking an ensemble form, the randomness existing in individual ELM training is generalized and reliable classification results can be obtained. The decision making is designed for ELM ensemble whose parameters are optimized to search for the optimal tradeoff between the warning accuracy and the warning earliness of the proposed IS. The compromise solution turns out to significantly speed up the overall computation with an acceptable sacrifice in the accuracy (e.g., from 100% to 99.9%). More importantly, the proposed IS can provide multiple and switchable performances to the operators in order to satisfy different local dynamic security assessment requirements. |
| Author | Kit Po Wong Zhao Xu Zhao Yang Dong Yuchen Zhang Yan Xu |
| Author_xml | – sequence: 1 givenname: Yuchen surname: Zhang fullname: Zhang, Yuchen – sequence: 2 givenname: Yan surname: Xu fullname: Xu, Yan – sequence: 3 givenname: Zhao Yang surname: Dong fullname: Dong, Zhao Yang – sequence: 4 givenname: Zhao surname: Xu fullname: Xu, Zhao – sequence: 5 givenname: Kit Po surname: Wong fullname: Wong, Kit Po |
| BookMark | eNp9kM9LwzAUx4Mo-PMueAl47kyatkm8DZ1aGCg68VjS9FWiXTKTjNH_3oyJBw-e3oP3_cH7HKN96ywgdE7JhFIirxZ1PckJ5ZO84pXgcg8dUVnQjJCS7Ke9LGnGcsIO0XEIH4QwTpg8QsvaRhgG8w424pnyw4jflLfGvmPX4ye3AY9fxhBhiW9Hq5ZG49oG0Gtv4oifTfi8xgu3Ub7Dj6tolmrAU52uSo_ZNs5YCAEvvOrA9f0pOujVEODsZ56g17vZ4uYhmz_e1zfTeaZzSWPWVb1QSvOiV5ToTpKuBdmCKIQmULVQ6VKBoEqmQXLGOlAtFV3LdQGCl5qdoMtd7sq7rzWE2Hy4tbepsklQeFnwPC-SiuxU2rsQPPTNyqcP_NhQ0myhNglqs4Xa_EBNluqPRZuoonE2emWG_4wXO6MBgN8eLirJhGDfaviIjQ |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2991534 crossref_primary_10_1109_TPWRD_2019_2912267 crossref_primary_10_1109_TPWRS_2024_3502201 crossref_primary_10_1109_JIOT_2023_3321793 crossref_primary_10_3390_en15249655 crossref_primary_10_1109_ACCESS_2022_3232526 crossref_primary_10_1186_s42162_018_0007_5 crossref_primary_10_1016_j_ijepes_2024_110082 crossref_primary_10_1049_iet_gtd_2017_1168 crossref_primary_10_1016_j_segan_2024_101350 crossref_primary_10_1016_j_ijepes_2021_107021 crossref_primary_10_1049_gtd2_12147 crossref_primary_10_18267_j_aip_246 crossref_primary_10_1109_TPWRS_2019_2926243 crossref_primary_10_1109_TPWRS_2025_3532124 crossref_primary_10_1016_j_ijepes_2021_107380 crossref_primary_10_1109_TSG_2019_2941565 crossref_primary_10_1016_j_rineng_2025_104172 crossref_primary_10_1007_s00607_019_00781_w crossref_primary_10_1109_TPWRS_2021_3071918 crossref_primary_10_1007_s10845_020_01631_9 crossref_primary_10_1109_ACCESS_2022_3193506 crossref_primary_10_1016_j_ijepes_2021_107651 crossref_primary_10_1016_j_apenergy_2020_115733 crossref_primary_10_3390_app9204216 crossref_primary_10_1049_iet_gtd_2019_1371 crossref_primary_10_4018_IJITSA_326933 crossref_primary_10_1109_TII_2020_3016590 crossref_primary_10_1109_TII_2023_3278873 crossref_primary_10_32604_ee_2023_026816 crossref_primary_10_1007_s10462_024_10993_y crossref_primary_10_1016_j_egyr_2022_02_243 crossref_primary_10_1049_gtd2_12111 crossref_primary_10_3390_en15239240 crossref_primary_10_1016_j_apenergy_2021_118221 crossref_primary_10_1109_JPROC_2020_2988715 crossref_primary_10_1016_j_ijepes_2021_107403 crossref_primary_10_1049_tje2_12400 crossref_primary_10_1109_TII_2019_2940098 crossref_primary_10_1109_JIOT_2022_3202267 crossref_primary_10_1016_j_ijepes_2020_106237 crossref_primary_10_1016_j_ijepes_2020_106316 crossref_primary_10_1061__ASCE_EY_1943_7897_0000619 crossref_primary_10_1109_TSTE_2022_3153843 crossref_primary_10_1142_S0218126624502347 crossref_primary_10_3390_e19100552 crossref_primary_10_3390_app11219820 crossref_primary_10_1049_iet_gtd_2018_6241 crossref_primary_10_1109_JETCAS_2023_3293253 crossref_primary_10_1109_TPWRS_2023_3260871 crossref_primary_10_1109_TSG_2021_3133604 crossref_primary_10_1109_TII_2024_3431034 crossref_primary_10_1109_ACCESS_2019_2923799 crossref_primary_10_3389_fenrg_2023_1281368 crossref_primary_10_1016_j_apenergy_2020_114586 crossref_primary_10_1016_j_eswa_2024_123985 crossref_primary_10_1049_iet_gtd_2020_0612 crossref_primary_10_1016_j_egyai_2025_100618 crossref_primary_10_1109_ACCESS_2020_2969039 crossref_primary_10_1109_TII_2018_2829818 crossref_primary_10_1049_iet_gtd_2019_1198 crossref_primary_10_1061__ASCE_EY_1943_7897_0000604 crossref_primary_10_1186_s41601_018_0091_3 crossref_primary_10_1109_TSG_2020_2991335 crossref_primary_10_1109_JIOT_2023_3308170 crossref_primary_10_1088_1742_6596_1865_2_022027 crossref_primary_10_1016_j_segan_2022_100674 crossref_primary_10_2478_amns_2024_3024 crossref_primary_10_2478_amns_2024_2214 |
| Cites_doi | 10.1109/TPWRS.2004.825981 10.1109/TPWRS.2007.901667 10.1109/PES.2006.1709418 10.1109/TPWRS.2015.2438322 10.1111/j.0824-7935.2004.t01-1-00228.x 10.1109/59.962423 10.1109/TNN.2006.880583 10.1109/TII.2012.2206396 10.1007/s13042-011-0019-y 10.1007/978-1-4615-4319-0 10.1016/j.neucom.2005.12.126 10.1049/iet-gtd.2009.0701 10.1016/B978-1-55860-247-2.50037-1 10.1049/iet-gtd.2009.0255 10.1109/TPWRS.2007.908476 10.1109/TSMCB.2011.2168604 10.1109/TPWRS.2008.926431 10.1109/TPWRS.2013.2266617 10.1109/TSG.2010.2052935 10.1080/00222895.1995.9941714 10.1016/S0004-3702(02)00190-X 10.1109/TNN.2006.875977 10.1109/TPWRS.2012.2183899 10.1109/PES.2006.1709501 10.1023/A:1025667309714 10.1109/34.58871 10.1109/TPWRS.2013.2259641 10.1049/iet-gtd.2010.0355 10.1109/TSG.2010.2053855 10.1109/TPWRS.2013.2287871 10.1109/TEVC.2007.913121 10.1109/MIS.2011.41 10.1109/59.932291 10.1109/TPWRS.2007.913298 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2017.2676879 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 2554 |
| ExternalDocumentID | 10_1109_TII_2017_2676879 7869388 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Nanyang Assistant Professorship from Nanyang Technological University, Singapore – fundername: Faculty of Engineering and Information Technologies, University of Sydney, under the Faculty Research Cluster Program – fundername: Australian Postgraduate Award – fundername: China Southern Power Grid Company grantid: WYKJ00000027 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c291t-d6f8aac74fa10cd90dbe9be848c0e6be6c5ae81a95ae0233deab18db7c4e875c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 87 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412361900043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:12:49 EDT 2025 Sat Nov 29 04:39:48 EST 2025 Tue Nov 18 21:00:59 EST 2025 Tue Aug 26 17:08:20 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-d6f8aac74fa10cd90dbe9be848c0e6be6c5ae81a95ae0233deab18db7c4e875c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1947547224 |
| PQPubID | 85507 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_1947547224 ieee_primary_7869388 crossref_primary_10_1109_TII_2017_2676879 crossref_citationtrail_10_1109_TII_2017_2676879 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-01 |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2017 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref36 ref14 ref31 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref24 ref23 ref26 ref25 ref20 beyer (ref18) 2012 ref22 ref21 miettinen (ref29) 1999 zhang (ref30) 0 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 han (ref33) 2001 xu (ref15) 0 ref40 seyedi (ref37) 2009 |
| References_xml | – ident: ref3 doi: 10.1109/TPWRS.2004.825981 – ident: ref12 doi: 10.1109/TPWRS.2007.901667 – year: 2012 ident: ref18 publication-title: The Importance of 'Big Data' A Definition – ident: ref7 doi: 10.1109/PES.2006.1709418 – ident: ref21 doi: 10.1109/TPWRS.2015.2438322 – ident: ref38 doi: 10.1111/j.0824-7935.2004.t01-1-00228.x – start-page: 1 year: 0 ident: ref15 article-title: Transient stability assessment based on data-structure analysis of operating point space publication-title: Proc IEEE Power Eng Soc Gen Meet – ident: ref6 doi: 10.1109/59.962423 – ident: ref23 doi: 10.1109/TNN.2006.880583 – ident: ref2 doi: 10.1109/TII.2012.2206396 – ident: ref25 doi: 10.1007/s13042-011-0019-y – ident: ref39 doi: 10.1007/978-1-4615-4319-0 – ident: ref22 doi: 10.1016/j.neucom.2005.12.126 – ident: ref36 doi: 10.1049/iet-gtd.2009.0701 – ident: ref31 doi: 10.1016/B978-1-55860-247-2.50037-1 – ident: ref13 doi: 10.1049/iet-gtd.2009.0255 – ident: ref8 doi: 10.1109/TPWRS.2007.908476 – ident: ref26 doi: 10.1109/TSMCB.2011.2168604 – ident: ref19 doi: 10.1109/TPWRS.2008.926431 – ident: ref9 doi: 10.1109/TPWRS.2013.2266617 – ident: ref11 doi: 10.1109/TSG.2010.2052935 – ident: ref40 doi: 10.1080/00222895.1995.9941714 – year: 2001 ident: ref33 publication-title: Data Mining Concepts and Techniques – ident: ref27 doi: 10.1016/S0004-3702(02)00190-X – start-page: 1 year: 0 ident: ref30 article-title: A good point set-based knowledgebase generation scheme for power system intelligent dynamic security assessment publication-title: Proc Int Conf Adv Power Syst Control Oper Manage – ident: ref24 doi: 10.1109/TNN.2006.875977 – ident: ref16 doi: 10.1109/TPWRS.2012.2183899 – ident: ref4 doi: 10.1109/PES.2006.1709501 – ident: ref32 doi: 10.1023/A:1025667309714 – ident: ref28 doi: 10.1109/34.58871 – ident: ref35 doi: 10.1109/TPWRS.2013.2259641 – ident: ref14 doi: 10.1049/iet-gtd.2010.0355 – ident: ref17 doi: 10.1109/TSG.2010.2053855 – ident: ref20 doi: 10.1109/TPWRS.2013.2287871 – year: 1999 ident: ref29 publication-title: Nonlinear Multiobjective Optimization – year: 2009 ident: ref37 article-title: Evaluation of the DFIG wind turbine built-in model in PSS/E – ident: ref34 doi: 10.1109/TEVC.2007.913121 – ident: ref5 doi: 10.1109/MIS.2011.41 – ident: ref10 doi: 10.1109/59.932291 – ident: ref1 doi: 10.1109/TPWRS.2007.913298 |
| SSID | ssj0037039 |
| Score | 2.4963152 |
| Snippet | Dynamic insecurity risk of a power system has been increasingly concerned due to the integration of stochastic renewable power sources (such as wind and solar... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2544 |
| SubjectTerms | Accuracy Computational modeling Decision making Dynamic insecurity risk early warning Early warning systems Electronic mail extreme learning machine (ELM) intelligent system (IS) Mathematical programming multiobjective programming (MOP) Multiple objective analysis Neural networks On-line systems Power sources Power system dynamics Power system stability Randomness Reliability Solar generators Tradeoffs Training |
| Title | Intelligent Early Warning of Power System Dynamic Insecurity Risk: Toward Optimal Accuracy-Earliness Tradeoff |
| URI | https://ieeexplore.ieee.org/document/7869388 https://www.proquest.com/docview/1947547224 |
| Volume | 13 |
| WOSCitedRecordID | wos000412361900043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFD6o9ME-qFWLq7bkoS9C42Y2mVx8E6t0oVgp2-rbkMsJSOuuuKvgvzfJzC6CIvRpBiYnM-Q7k5PLyfcBfBEsCsNqR6OKjGZCOepMHaiVVkspnKsKpdCfH-r8XF9dmYsl-Lo4C4OIJfkMD_Nt2csPE3-fl8r6SkvDtV6GZaVUe1Zr3uvy5LmmcKPWFeUDxudbksz0R8NhzuFShwOZBtc5aetZCCqaKi864hJdztb_77s2YK0bRZLjFvYPsITjTXj_jFtwC26GC7LNGSk0xuSyXQUhk0gusjgaaenKybdWlZ4Mx9NOzY78up7-PSKjklNLfqZu5Sa_zqen1j_SXF1Jlycp1AWcxLgNv89ORyffaaetQP3AVDMaZNTWeiWirZgPhgWHxqEW2jOUDqWvLerKmnRJYZ0HtK7SwSkvME1xPP8IK-PJGHeABCmwGA-qKGruDQY0Ohqe2ilw5nrQnzd34zvi8ax_8a8pExBmmgRQkwFqOoB6cLCwuG1JN94ou5UBWZTrsOjB_hzRpvsrp01lkjNmdkyx-7rVHqzmuttkvX1Ymd3d4yd45x9m19O7z8XhngAWTNZS |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UKqgP9VLFtVXz4Itguskkk0l8K9XSwXUtsmrfhlxOoGh3pbsV_PcmmdmloAg-zcDkTIZ8Z3JyOfk-gJeSRWlY7WhsIqOZUI46UwdqldVKSed4oRT6MmmmU312Zk634PXmLAwiluQzPMi3ZS8_LPxVXiobN1oZofUNuFlLWfH-tNa63xXJd01hR605FRUT601JZsazts1ZXM1BpdLwOqdtXQtCRVXlj664xJfje__3ZfdhZxhHksMe-AewhfOHcPcau-AuXLQbus0VKUTG5Gu_DkIWkZxmeTTSE5aTt70uPWnny0HPjnw6X357Q2Ylq5Z8TB3LRa7Op6fW_6L5dSVhnqRgF3AR4yP4fPxudnRCB3UF6ivDVzSoqK31jYyWMx8MCw6NQy21Z6gcKl9b1NyadEmBXQS0juvgGi8xTXK8eAzb88UcnwAJSmIxrniUtfAGAxodjUjtFARzIxivm7vzA_V4VsD43pUpCDNdAqjLAHUDQCN4tbH40dNu_KPsbgZkU27AYgT7a0S74b9cdtwkd8z8mPLp361ewO2T2YdJN2mn7_fgTq6nT93bh-3V5RU-g1v-5-p8efm8ON9vX6jZmQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Early+Warning+of+Power+System+Dynamic+Insecurity+Risk%3A+Toward+Optimal+Accuracy-Earliness+Tradeoff&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Zhang%2C+Yuchen&rft.au=Xu%2C+Yan&rft.au=Zhao+Yang+Dong&rft.au=Zhao%2C+Xu&rft.date=2017-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=13&rft.issue=5&rft.spage=2544&rft_id=info:doi/10.1109%2FTII.2017.2676879&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |