Sliding Mode Direct Torque Control of SPMSMs Based on a Hybrid Wolf Optimization Algorithm

Direct torque control has been widely used to control surface-mounted permanent magnet synchronous motors (SPMSMs). To reduce the torque ripple and improve the flux tracking accuracy of SPMSM drives, sliding mode direct torque control (SMDTC) was developed. However, its optimal performance is hardly...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial electronics (1982) Ročník 69; číslo 5; s. 4534 - 4544
Hlavní autoři: Jin, Zhijia, Sun, Xiaodong, Lei, Gang, Guo, Youguang, Zhu, Jianguo
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0278-0046, 1557-9948
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Direct torque control has been widely used to control surface-mounted permanent magnet synchronous motors (SPMSMs). To reduce the torque ripple and improve the flux tracking accuracy of SPMSM drives, sliding mode direct torque control (SMDTC) was developed. However, its optimal performance is hardly obtained by trial and error tuning of the control parameters. Hence, a hybrid wolf optimization algorithm (HWOA) is proposed to automatically adjust the controller's parameters of SMDTC for SPMSMs in this article. This algorithm combines the grey wolf optimization algorithm and coyote optimization algorithm. A conversion probability is designed to use them simultaneously. The proposed HWOA holds the advantages of the two algorithms. It converges very fast and can avoid local optimums effectively. Furthermore, a special fitness index with penalty terms is designed to enhance flux tracking accuracy and reduce the torque ripple of SPMSM drives. The superiority of the proposed control method is verified by an experiment.
AbstractList Direct torque control has been widely used to control surface-mounted permanent magnet synchronous motors (SPMSMs). To reduce the torque ripple and improve the flux tracking accuracy of SPMSM drives, sliding mode direct torque control (SMDTC) was developed. However, its optimal performance is hardly obtained by trial and error tuning of the control parameters. Hence, a hybrid wolf optimization algorithm (HWOA) is proposed to automatically adjust the controller's parameters of SMDTC for SPMSMs in this article. This algorithm combines the grey wolf optimization algorithm and coyote optimization algorithm. A conversion probability is designed to use them simultaneously. The proposed HWOA holds the advantages of the two algorithms. It converges very fast and can avoid local optimums effectively. Furthermore, a special fitness index with penalty terms is designed to enhance flux tracking accuracy and reduce the torque ripple of SPMSM drives. The superiority of the proposed control method is verified by an experiment.
Author Zhu, Jianguo
Lei, Gang
Guo, Youguang
Jin, Zhijia
Sun, Xiaodong
Author_xml – sequence: 1
  givenname: Zhijia
  surname: Jin
  fullname: Jin, Zhijia
  email: 2111904009@stmail.ujs.edu.cn
  organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China
– sequence: 2
  givenname: Xiaodong
  orcidid: 0000-0002-9451-3311
  surname: Sun
  fullname: Sun, Xiaodong
  email: xdsun@ujs.edu.cn
  organization: Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, China
– sequence: 3
  givenname: Gang
  orcidid: 0000-0002-8369-6802
  surname: Lei
  fullname: Lei, Gang
  email: gang.lei@uts.edu.au
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia
– sequence: 4
  givenname: Youguang
  orcidid: 0000-0001-6182-0684
  surname: Guo
  fullname: Guo, Youguang
  email: youguang.guo-1@uts.edu.au
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW, Australia
– sequence: 5
  givenname: Jianguo
  orcidid: 0000-0002-9763-4047
  surname: Zhu
  fullname: Zhu, Jianguo
  email: jianguo.zhu@sydney.edu.au
  organization: School of Electrical and Information Engineering, University of Sydney, Sydney, NSW, Australia
BookMark eNp9kE1PAjEQhhujiYDeTbw08bzYTru77RHxAxIIJmBMvGxK28WSZYvdesBf7yLEgwdPc5h55p15uui09rVF6IqSPqVE3i7GD30gQPuMCAJATlCHpmmeSMnFKeoQyEVCCM_OUbdp1oRQntK0g97mlTOuXuGpNxbfu2B1xAsfPj4tHvo6Bl9hX-L583Q-bfCdaqzBvsYKj3bL4Ax-9VWJZ9voNu5LRde2BtXKBxffNxforFRVYy-PtYdeHh8Ww1EymT2Nh4NJokHSmJjMGC5ySnOxVMCMWgoGoKXOVJlLnRueKtCCLzmIUmhITW4kMcAZWKVEynro5rB3G3x7dhOLtf8MdRtZQEYlAQaUtVPkMKWDb5pgy2Ib3EaFXUFJsTdYtAaLvcHiaLBFsj-IdvHnyRiUq_4Drw-gs9b-5kjOMgKSfQPvhH5j
CODEN ITIED6
CitedBy_id crossref_primary_10_1051_e3sconf_202346900083
crossref_primary_10_1177_16878132241252334
crossref_primary_10_1007_s42835_024_01785_z
crossref_primary_10_1109_TFUZZ_2024_3486750
crossref_primary_10_1007_s00202_023_02169_8
crossref_primary_10_1109_ACCESS_2022_3227330
crossref_primary_10_1109_TTE_2023_3310738
crossref_primary_10_3390_wevj14080212
crossref_primary_10_3390_app122312177
crossref_primary_10_1038_s41598_022_25031_6
crossref_primary_10_54644_jte_2025_1807
crossref_primary_10_1109_TPEL_2022_3146841
crossref_primary_10_1109_TTE_2023_3241996
crossref_primary_10_1109_TEC_2023_3301000
crossref_primary_10_1109_TMECH_2023_3240986
crossref_primary_10_1007_s42835_023_01710_w
crossref_primary_10_1109_TTE_2023_3293510
crossref_primary_10_1109_TIE_2023_3243304
crossref_primary_10_1177_16878132241282013
crossref_primary_10_3390_wevj15050196
crossref_primary_10_1007_s00202_023_01779_6
crossref_primary_10_1109_TIE_2025_3552258
crossref_primary_10_3390_app12168317
crossref_primary_10_1007_s42835_024_02069_2
crossref_primary_10_1177_16878140211045195
crossref_primary_10_3390_pr11072020
crossref_primary_10_1177_10775463241257748
crossref_primary_10_1177_16878132231198664
crossref_primary_10_1016_j_isatra_2022_08_013
crossref_primary_10_1109_TTE_2024_3408210
crossref_primary_10_1007_s00202_022_01515_6
crossref_primary_10_1177_16878132221090025
crossref_primary_10_1109_TTE_2022_3206452
crossref_primary_10_3390_wevj14040114
crossref_primary_10_1109_ACCESS_2024_3437428
crossref_primary_10_1109_JESTIE_2022_3148031
crossref_primary_10_3390_machines13090767
crossref_primary_10_1177_16878132241273529
crossref_primary_10_1038_s41598_025_99429_3
crossref_primary_10_1109_ACCESS_2024_3402983
crossref_primary_10_1177_16878132221132154
crossref_primary_10_1177_01445987251353243
crossref_primary_10_1109_TTE_2023_3296684
crossref_primary_10_1177_16878132251372789
crossref_primary_10_1109_TEC_2022_3227196
crossref_primary_10_1177_16878132231199345
crossref_primary_10_1109_TEC_2023_3314521
crossref_primary_10_54644_jte_2025_1792
crossref_primary_10_1002_asjc_3306
crossref_primary_10_1109_JAS_2022_105851
crossref_primary_10_1109_JESTPE_2024_3515046
crossref_primary_10_3390_app12073666
crossref_primary_10_1109_TTE_2025_3530444
crossref_primary_10_1186_s13638_024_02349_5
crossref_primary_10_1109_TPEL_2025_3596128
crossref_primary_10_1080_00207217_2023_2245195
crossref_primary_10_1109_TEC_2024_3386793
crossref_primary_10_1109_TFUZZ_2023_3335851
crossref_primary_10_1177_10775463241264864
crossref_primary_10_1109_TTE_2025_3543660
crossref_primary_10_1109_TPEL_2024_3370622
crossref_primary_10_1109_TTE_2022_3190536
crossref_primary_10_1007_s42835_023_01421_2
crossref_primary_10_1007_s00202_023_02038_4
crossref_primary_10_1109_TMECH_2021_3121802
crossref_primary_10_1109_TPEL_2023_3334861
crossref_primary_10_1109_TTE_2021_3111889
crossref_primary_10_1109_TTE_2022_3195945
crossref_primary_10_1109_TTE_2024_3443809
crossref_primary_10_1016_j_energy_2023_129251
crossref_primary_10_1109_TTE_2023_3287159
crossref_primary_10_1016_j_rser_2023_113569
crossref_primary_10_1109_TIE_2023_3337498
crossref_primary_10_1108_CW_12_2023_0453
crossref_primary_10_1109_TEC_2021_3138905
crossref_primary_10_1007_s43236_022_00496_w
crossref_primary_10_1109_TTE_2024_3496505
crossref_primary_10_1109_JESTIE_2024_3417375
crossref_primary_10_1016_j_energy_2024_132014
crossref_primary_10_3390_math11224666
crossref_primary_10_1371_journal_pone_0308417
crossref_primary_10_1109_TIE_2024_3429660
crossref_primary_10_1109_TEC_2023_3239525
crossref_primary_10_3390_app13106255
crossref_primary_10_1109_TEC_2023_3257302
crossref_primary_10_1109_TTE_2024_3374273
crossref_primary_10_1016_j_iot_2024_101323
crossref_primary_10_1109_TTE_2024_3388375
crossref_primary_10_1109_TTE_2023_3288868
crossref_primary_10_3390_math11194067
crossref_primary_10_1007_s42835_023_01438_7
crossref_primary_10_1016_j_aej_2024_12_029
crossref_primary_10_1109_TPEL_2024_3396504
crossref_primary_10_3390_en14185874
crossref_primary_10_1007_s11071_024_10195_9
crossref_primary_10_3233_JAE_210033
crossref_primary_10_1007_s43236_022_00530_x
crossref_primary_10_1016_j_asoc_2023_110827
Cites_doi 10.1109/TTE.2020.3031338
10.1109/41.937422
10.1109/TPEL.2020.2994254
10.1109/TPEL.2019.2923726
10.1109/TIE.2017.2677346
10.1109/TIE.2020.2984433
10.1080/15325008.2015.1041625
10.1109/TIA.2016.2599902
10.1109/ACCESS.2020.3000770
10.1109/PEDES.2016.7914260
10.1109/TVT.2020.2981422
10.1109/CEC.2018.8477769
10.1109/TIE.2016.2607698
10.1109/ACCESS.2018.2864303
10.1109/ICETEESES.2016.7581394
10.1016/j.asoc.2015.09.045
10.1007/s00500-018-3310-y
10.1016/j.advengsoft.2013.12.007
10.1109/TPEL.2013.2262953
10.1109/TEC.2020.2989438
10.1109/TIE.2016.2569067
10.1109/TIE.2015.2426678
10.1049/iet-epa.2019.0383
10.1109/JSEN.2018.2822712
10.1109/TIE.2019.2947875
10.1109/TEC.2009.2036249
10.1109/COMPUMAG45669.2019.9032768
10.1109/TPEL.2021.3063226
10.1109/TPEL.2017.2694450
10.1109/TTE.2021.3052986
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2021.3080220
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 4544
ExternalDocumentID 10_1109_TIE_2021_3080220
9436029
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province of China
  grantid: BK20180046
– fundername: "Qinglan project" of Jiangsu Province
– fundername: China Scholarship Council
  grantid: 202008320563
  funderid: 10.13039/501100004543
– fundername: National Natural Science Foundation of China
  grantid: 51875261
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-d6dd4871178ba23dab8322c9c6af79c7d45a2c84b428f8c25d7d90d2432eaa853
IEDL.DBID RIE
ISICitedReferencesCount 106
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742200700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0046
IngestDate Mon Jun 30 10:14:23 EDT 2025
Sat Nov 29 01:31:51 EST 2025
Tue Nov 18 22:25:22 EST 2025
Wed Aug 27 03:03:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-d6dd4871178ba23dab8322c9c6af79c7d45a2c84b428f8c25d7d90d2432eaa853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6182-0684
0000-0002-9451-3311
0000-0002-8369-6802
0000-0002-9763-4047
PQID 2619023213
PQPubID 85464
PageCount 11
ParticipantIDs ieee_primary_9436029
proquest_journals_2619023213
crossref_primary_10_1109_TIE_2021_3080220
crossref_citationtrail_10_1109_TIE_2021_3080220
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
Zhang (ref28) 2020
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref15
  doi: 10.1109/TTE.2020.3031338
– ident: ref8
  doi: 10.1109/41.937422
– ident: ref17
  doi: 10.1109/TPEL.2020.2994254
– ident: ref24
  doi: 10.1109/TPEL.2019.2923726
– ident: ref10
  doi: 10.1109/TIE.2017.2677346
– ident: ref4
  doi: 10.1109/TIE.2020.2984433
– ident: ref23
  doi: 10.1080/15325008.2015.1041625
– ident: ref9
  doi: 10.1109/TIA.2016.2599902
– ident: ref30
  doi: 10.1109/ACCESS.2020.3000770
– year: 2020
  ident: ref28
  article-title: Hybrid coyote optimization algorithm with grey wolf optimizer and its application to clustering optimization
  publication-title: Acta Automatica Sinica
– ident: ref16
  doi: 10.1109/PEDES.2016.7914260
– ident: ref2
  doi: 10.1109/TVT.2020.2981422
– ident: ref25
  doi: 10.1109/CEC.2018.8477769
– ident: ref21
  doi: 10.1109/TIE.2016.2607698
– ident: ref20
  doi: 10.1109/ACCESS.2018.2864303
– ident: ref18
  doi: 10.1109/ICETEESES.2016.7581394
– ident: ref29
  doi: 10.1016/j.asoc.2015.09.045
– ident: ref26
  doi: 10.1007/s00500-018-3310-y
– ident: ref19
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref14
  doi: 10.1109/TPEL.2013.2262953
– ident: ref6
  doi: 10.1109/TEC.2020.2989438
– ident: ref3
  doi: 10.1109/TIE.2016.2569067
– ident: ref7
  doi: 10.1109/TIE.2015.2426678
– ident: ref22
  doi: 10.1049/iet-epa.2019.0383
– ident: ref27
  doi: 10.1109/JSEN.2018.2822712
– ident: ref1
  doi: 10.1109/TIE.2019.2947875
– ident: ref13
  doi: 10.1109/TEC.2009.2036249
– ident: ref31
  doi: 10.1109/COMPUMAG45669.2019.9032768
– ident: ref12
  doi: 10.1109/TPEL.2021.3063226
– ident: ref5
  doi: 10.1109/TPEL.2017.2694450
– ident: ref11
  doi: 10.1109/TTE.2021.3052986
SSID ssj0014515
Score 2.6427941
Snippet Direct torque control has been widely used to control surface-mounted permanent magnet synchronous motors (SPMSMs). To reduce the torque ripple and improve the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4534
SubjectTerms Algorithms
Control methods
Control surfaces
Convergence
Coyote optimization algorithm (COA)
grey wolf optimization algorithm (GWOA)
Indexes
Optimization
Optimization algorithms
Parameters
permanent magnet synchronous motors
Permanent magnets
Ripples
Sliding mode control
sliding mode direct torque control (SMDTC)
Sun
Synchronous motors
Torque
Torque control
Torque measurement
Tracking
Title Sliding Mode Direct Torque Control of SPMSMs Based on a Hybrid Wolf Optimization Algorithm
URI https://ieeexplore.ieee.org/document/9436029
https://www.proquest.com/docview/2619023213
Volume 69
WOSCitedRecordID wos000742200700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLa2iQMceCMGA-XABYmyNs2a5jimoXHYmLQhEJcqjVOYtK1oDyT-PUnbTSAQErceErWyE9tf7c8GuIjdUDEdK4cLZSk5TDih1NShiDRGT2GShNmwCd7rhU9Pol-CqzUXRmudFZ_pa_uY5fIxVUv7q6wumB-4VJShzDnPuVrrjAFr5NMKqO0Ya0DfKiXpivrwrm2AIPWu_ZxY-s0FZTNVfhjizLvc7vzvu3Zhu4giSTNX-x6U9HQftr70FjyA58F4ZP0SsdPOSG7ZyDCdmdeTVl6fTtKEDPrdQXdObowzQ5JOiSSdD0viIo_pOCH3xqBMCqYmaY5f0tlo8To5hIfb9rDVcYpBCo6iwls4GCAaYOJ5PIwl9VHG9h4roQKZGB1xZA1JVchig0WSUNEGchQuUuZTLaVx6EdQmaZTfQyEy0AoJhJlAwMd2G5lyBJXGZDN0EO_CvWVbCNVdBm3wy7GUYY2XBEZbURWG1GhjSpcrne85R02_lh7YKW_XlcIvgq1lfqi4grOIwsNTUBCPf_k912nsEktlyGrXqxBZTFb6jPYUO-L0Xx2np2uT-BNy6E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8AvXBrylOp-bBF8FubZq1zeMcyoZuCpsovpQ0l-pgW2Wrgv-9SdsNRRF860NCy11yd7_e_e4ATiM7kExF0vK5NJQcxq1AKGpRRBqhIzGOg2zYhN_tBo-P_G4BzudcGKVUVnymquYxy-VjIt_Mr7IaZ65nU74Iy3XGqJOzteY5A1bP5xVQ0zNWw75ZUtLmtX77UkNB6lTdnFr6zQllU1V-mOLMv1xt_u_LtmCjiCNJI1f8Niyo8Q6sf-kuWIKn3nBgPBMx885IbttIP5no15NmXqFOkpj07jq9zpRcaHeGJBkTQVofhsZFHpJhTG61SRkVXE3SGD4nk0H6MtqF-6vLfrNlFaMULEm5k1roIWpo4jh-EAnqoojMTZZceiLWWvKR1QWVAYs0GokDSevoI7eRMpcqIbRL34OlcTJW-0B84XHJeCxNaKA8068MWWxLDbMZOuiWoTaTbSiLPuNm3MUwzPCGzUOtjdBoIyy0UYaz-Y7XvMfGH2tLRvrzdYXgy1CZqS8sLuE0NOBQhyTUcQ9-33UCq61-5ya8aXevD2GNGmZDVstYgaV08qaOYEW-p4Pp5Dg7aZ-kdM7o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sliding+Mode+Direct+Torque+Control+of+SPMSMs+Based+on+a+Hybrid+Wolf+Optimization+Algorithm&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Jin%2C+Zhijia&rft.au=Sun%2C+Xiaodong&rft.au=Lei%2C+Gang&rft.au=Guo%2C+Youguang&rft.date=2022-05-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=69&rft.issue=5&rft.spage=4534&rft.epage=4544&rft_id=info:doi/10.1109%2FTIE.2021.3080220&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2021_3080220
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon