ViTAL: Vision-Based Terrain-Aware Locomotion for Legged Robots

This article focuses on vision-based planning strategies for legged robots that separate locomotion planning into foothold selection and pose adaptation. Current pose adaptation strategies optimize the robot's body pose relative to given footholds. If these footholds are not reached, the robot...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on robotics Ročník 39; číslo 2; s. 1 - 20
Hlavní autoři: Fahmi, Shamel, Barasuol, Victor, Esteban, Domingo, Villarreal, Octavio, Semini, Claudio
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1552-3098, 1941-0468
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article focuses on vision-based planning strategies for legged robots that separate locomotion planning into foothold selection and pose adaptation. Current pose adaptation strategies optimize the robot's body pose relative to given footholds. If these footholds are not reached, the robot may end up in a state with no reachable safe footholds. Therefore, we present a vision-based terrain-aware locomotion (ViTAL) strategy that consists of novel pose adaptation and foothold selection algorithms. ViTAL introduces a different paradigm in pose adaptation that does not optimize the body pose relative to given footholds, but the body pose that maximizes the chances of the legs in reaching safe footholds. ViTAL plans footholds and poses based on skills that characterize the robot's capabilities and its terrain awareness. We use the 90-kg HyQ and 140-kg HyQReal quadruped robots to validate ViTAL and show that they are able to climb various obstacles, including stairs, gaps, and rough terrains, at different speeds and gaits. We compare ViTAL with a baseline strategy that selects the robot pose based on given selected footholds and show that ViTAL outperforms the baseline.
AbstractList This article focuses on vision-based planning strategies for legged robots that separate locomotion planning into foothold selection and pose adaptation. Current pose adaptation strategies optimize the robot's body pose relative to given footholds. If these footholds are not reached, the robot may end up in a state with no reachable safe footholds. Therefore, we present a vision-based terrain-aware locomotion (ViTAL) strategy that consists of novel pose adaptation and foothold selection algorithms. ViTAL introduces a different paradigm in pose adaptation that does not optimize the body pose relative to given footholds, but the body pose that maximizes the chances of the legs in reaching safe footholds. ViTAL plans footholds and poses based on skills that characterize the robot's capabilities and its terrain awareness. We use the 90-kg HyQ and 140-kg HyQReal quadruped robots to validate ViTAL and show that they are able to climb various obstacles, including stairs, gaps, and rough terrains, at different speeds and gaits. We compare ViTAL with a baseline strategy that selects the robot pose based on given selected footholds and show that ViTAL outperforms the baseline.
This article focuses on vision-based planning strategies for legged robots that separate locomotion planning into foothold selection and pose adaptation. Current pose adaptation strategies optimize the robot's body pose relative to given footholds. If these footholds are not reached, the robot may end up in a state with no reachable safe footholds. Therefore, we present a vision-based terrain-aware locomotion (ViTAL) strategy that consists of novel pose adaptation and foothold selection algorithms. ViTAL introduces a different paradigm in pose adaptation that does not optimize the body pose relative to given footholds, but the body pose that maximizes the chances of the legs in reaching safe footholds. ViTAL plans footholds and poses based on skills that characterize the robot's capabilities and its terrain awareness. We use the 90-kg HyQ and 140-kg HyQReal quadruped robots to validate ViTAL and show that they are able to climb various obstacles, including stairs, gaps, and rough terrains, at different speeds and gaits. We compare ViTAL with a baseline strategy that selects the robot pose based on given selected footholds and show that ViTAL outperforms the baseline.
Author Villarreal, Octavio
Semini, Claudio
Fahmi, Shamel
Barasuol, Victor
Esteban, Domingo
Author_xml – sequence: 1
  givenname: Shamel
  orcidid: 0000-0002-0892-7359
  surname: Fahmi
  fullname: Fahmi, Shamel
  organization: Dynamic Legged Systems Lab, Istituto Italiano di Tecnologia, Genoa, Italy
– sequence: 2
  givenname: Victor
  surname: Barasuol
  fullname: Barasuol, Victor
  organization: Dynamic Legged Systems Lab, Istituto Italiano di Tecnologia, Genoa, Italy
– sequence: 3
  givenname: Domingo
  orcidid: 0000-0002-3134-0281
  surname: Esteban
  fullname: Esteban, Domingo
  organization: Dynamic Legged Systems Lab, Istituto Italiano di Tecnologia, Genoa, Italy
– sequence: 4
  givenname: Octavio
  orcidid: 0000-0002-2822-9216
  surname: Villarreal
  fullname: Villarreal, Octavio
  organization: Dynamic Legged Systems Lab, Istituto Italiano di Tecnologia, Genoa, Italy
– sequence: 5
  givenname: Claudio
  orcidid: 0000-0002-3034-4686
  surname: Semini
  fullname: Semini, Claudio
  organization: Dynamic Legged Systems Lab, Istituto Italiano di Tecnologia, Genoa, Italy
BookMark eNp9kEtrwzAQhEVJoUnae6EXQ89K9bBsbw-FNPQFhkBwcxWyLAWHxEolh5J_X4WEHnroaRd2Zof5RmjQuc4gdEvJhFICD9ViPmGEsQlnjIEoLtCQQkoxSbNiEHchGOYEiis0CmFNCEuB8CF6WrbVtHxMlm1oXYefVTBNUhnvVdvh6bfyJimddlvXx3NinU9Ks1pFzcLVrg_X6NKqTTA35zlGn68v1ewdl_O3j9m0xJoB7XGTZQQaqIXVBQObFzmzmqu0VrYm1ujCiKaGnEPRCK05Z5BxmgMoRpWllvIxuj_93Xn3tTehl2u3912MlCyPbYmgIKKKnFTauxC8sXLn263yB0mJPFKSkZI8UpJnStGS_bHotlfHsn1EsPnPeHcytsaY3xyALOOc8h_f1XUA
CODEN ITREAE
CitedBy_id crossref_primary_10_1002_aisy_202300633
crossref_primary_10_1016_j_enconman_2025_119620
crossref_primary_10_1109_TMECH_2024_3446840
crossref_primary_10_1109_LRA_2025_3588716
crossref_primary_10_1109_LRA_2023_3293749
crossref_primary_10_1109_LRA_2024_3418270
crossref_primary_10_1002_rob_22350
crossref_primary_10_1126_scirobotics_adv3604
crossref_primary_10_3390_biomimetics8080561
Cites_doi 10.1177/0278364910388677
10.1109/IROS.2012.6385548
10.1109/LRA.2021.3060437
10.1109/IROS.2018.8593888
10.1109/ICRA.2013.6630926
10.1038/s41592-019-0686-2
10.1109/ICRA40945.2020.9196673
10.15607/rss.2021.xvii.061
10.1109/LRA.2020.2979660
10.1109/ROBOT.2008.4543305
10.1109/LRA.2019.2895390
10.1109/ICRA.2013.6631372
10.1126/scirobotics.abc5986
10.1109/ICRA48506.2021.9560794
10.1109/TRO.2019.2954670
10.15607/rss.2021.xvii.021
10.1109/LRA.2019.2908502
10.1109/ICRA40945.2020.9196777
10.1109/LRA.2020.3007427
10.1007/s10514-021-10013-w
10.13180/clawar.2020.24-26.08.62
10.1109/LRA.2021.3061322
10.1109/IROS.2015.7354191
10.1109/LRA.2019.2899434
10.1109/ICRA40945.2020.9197312
10.1109/LRA.2018.2798285
10.1109/ICRA.2019.8793801
10.1109/TRO.2020.3048125
10.1109/ICRA.2018.8460731
10.1002/rob.21974
10.1002/rob.20397
10.1109/LRA.2017.2652491
10.1109/LSENS.2021.3049954
10.1109/ICRA40945.2020.9196816
10.1126/scirobotics.abk2822
10.1109/ICRA48506.2021.9561639
10.1109/LRA.2020.3007475
10.1109/IROS.2004.1389727
10.1109/IROS45743.2020.9341128
10.1109/IROS.2018.8593885
10.1109/TRO.2020.3003464
10.1126/scirobotics.abb2174
10.1016/j.neunet.2015.05.005
10.1109/ACCESS.2019.2933178
10.1109/LRA.2021.3066833
10.15607/RSS.2021.XVII.011
10.1109/ICRA.2016.7487541
10.1177/0959651811402275
10.1137/S1052623497325107
10.1109/ICRA.2019.8793865
10.1109/IROS.2009.5354701
10.1007/978-3-319-26054-9_5
10.1142/9789814525534_0056
10.1109/IROS.2016.7758092
10.1109/TRO.2015.2482061
10.1109/IROS45743.2020.9341751
10.1109/TRO.2018.2819658
10.1109/LRA.2021.3088797
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TRO.2022.3222958
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 20
ExternalDocumentID 10_1109_TRO_2022_3222958
9966331
Genre orig-research
GroupedDBID .DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
5VS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
VJK
7SC
7SP
7TB
8FD
AARMG
ABAZT
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-d6609d9b5fc829f7872fc3a4bafb0fec8e5db97398d5cc3329631799a21af1f13
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000912783200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-3098
IngestDate Mon Jun 30 05:31:34 EDT 2025
Sat Nov 29 01:47:30 EST 2025
Tue Nov 18 21:32:40 EST 2025
Tue Nov 25 14:44:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-d6609d9b5fc829f7872fc3a4bafb0fec8e5db97398d5cc3329631799a21af1f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3034-4686
0000-0002-2822-9216
0000-0002-3134-0281
0000-0002-0892-7359
PQID 2795805195
PQPubID 27625
PageCount 20
ParticipantIDs crossref_primary_10_1109_TRO_2022_3222958
crossref_citationtrail_10_1109_TRO_2022_3222958
proquest_journals_2795805195
ieee_primary_9966331
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
Diebel (ref69) 2006
ref15
ref59
ref14
ref58
ref53
ref52
Nocedal (ref71) 1996; 17
ref11
ref55
ref54
Fahmi (ref64) 2021
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
Maas (ref66) 2013
ref43
ref49
(ref7) 2021
ref4
Yu (ref30) 2021
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref74
ref33
ref32
Rudin (ref29) 2021
ref2
ref1
ref39
ref38
Semini (ref3) 2019
Kingma (ref68) 2015
Bishop (ref67) 2006
Paigwar (ref17) 2020
(ref8) 2021
ref73
ref72
Cun (ref65) 1989
ref24
Fahmi (ref10) 2021
ref23
ref26
ref25
ref20
ref63
ref22
ref21
ref28
ref27
Paszke (ref70) 2019
ref60
ref62
ref61
(ref9) 2021
References_xml – ident: ref36
  doi: 10.1177/0278364910388677
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  year: 2015
  ident: ref68
  article-title: Adam: A method for stochastic optimization
– ident: ref51
  doi: 10.1109/IROS.2012.6385548
– ident: ref14
  doi: 10.1109/LRA.2021.3060437
– volume: 17
  volume-title: Numerical Optimization
  year: 1996
  ident: ref71
– ident: ref40
  doi: 10.1109/IROS.2018.8593888
– ident: ref56
  doi: 10.1109/ICRA.2013.6630926
– ident: ref73
  doi: 10.1038/s41592-019-0686-2
– ident: ref23
  doi: 10.1109/ICRA40945.2020.9196673
– volume-title: Spot
  year: 2021
  ident: ref7
– year: 2021
  ident: ref10
  article-title: On terrain-aware locomotion for legged robots
– ident: ref34
  doi: 10.15607/rss.2021.xvii.061
– ident: ref35
  doi: 10.1109/LRA.2020.2979660
– ident: ref42
  doi: 10.1109/ROBOT.2008.4543305
– start-page: 1
  volume-title: Proc. Italian Conf. Robot. Intell. Mach.
  year: 2019
  ident: ref3
  article-title: Brief introduction to the quadruped robot HyQReal
– ident: ref18
  doi: 10.1109/LRA.2019.2895390
– ident: ref26
  doi: 10.1109/ICRA.2013.6631372
– ident: ref1
  doi: 10.1126/scirobotics.abc5986
– ident: ref21
  doi: 10.1109/ICRA48506.2021.9560794
– ident: ref16
  doi: 10.1109/TRO.2019.2954670
– ident: ref20
  doi: 10.15607/rss.2021.xvii.021
– ident: ref59
  doi: 10.1109/LRA.2019.2908502
– ident: ref50
  doi: 10.1109/ICRA40945.2020.9196777
– volume-title: Go1
  year: 2021
  ident: ref9
– ident: ref46
  doi: 10.1109/LRA.2020.3007427
– ident: ref11
  doi: 10.1007/s10514-021-10013-w
– ident: ref49
  doi: 10.13180/clawar.2020.24-26.08.62
– volume-title: Robots
  year: 2021
  ident: ref8
– ident: ref28
  doi: 10.1109/LRA.2021.3061322
– ident: ref45
  doi: 10.1109/IROS.2015.7354191
– ident: ref38
  doi: 10.1109/LRA.2019.2899434
– ident: ref53
  doi: 10.1109/ICRA40945.2020.9197312
– ident: ref24
  doi: 10.1109/LRA.2018.2798285
– start-page: 1291
  volume-title: Proc. Conf. Robot Learn.
  year: 2021
  ident: ref30
  article-title: Visual-locomotion: Learning to walk on complex terrains with vision
– ident: ref48
  doi: 10.1109/ICRA.2019.8793801
– ident: ref22
  doi: 10.1109/TRO.2020.3048125
– ident: ref37
  doi: 10.1109/ICRA.2018.8460731
– ident: ref39
  doi: 10.1002/rob.21974
– ident: ref44
  doi: 10.1002/rob.20397
– ident: ref61
  doi: 10.1109/LRA.2017.2652491
– start-page: 1
  volume-title: Proc. Conf. Robot Learn.
  year: 2020
  ident: ref17
  article-title: Robust quadrupedal locomotion on sloped terrains: A linear policy approach
– ident: ref12
  doi: 10.1109/LSENS.2021.3049954
– start-page: 396
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 1989
  ident: ref65
  article-title: Handwritten digit recognition with a back-propagation network
– ident: ref15
  doi: 10.1109/ICRA40945.2020.9196816
– ident: ref31
  doi: 10.1126/scirobotics.abk2822
– ident: ref32
  doi: 10.1109/ICRA48506.2021.9561639
– year: 2021
  ident: ref64
  article-title: ViTAL accompanying video
– ident: ref27
  doi: 10.1109/LRA.2020.3007475
– ident: ref74
  doi: 10.1109/IROS.2004.1389727
– ident: ref54
  doi: 10.1109/IROS45743.2020.9341128
– ident: ref5
  doi: 10.1109/IROS.2018.8593885
– ident: ref25
  doi: 10.1109/TRO.2020.3003464
– year: 2006
  ident: ref69
  article-title: Representing attitude: Euler angles, unit quaternions, and rotation vectors
– ident: ref2
  doi: 10.1126/scirobotics.abb2174
– ident: ref57
  doi: 10.1016/j.neunet.2015.05.005
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: ref67
– ident: ref52
  doi: 10.1109/ACCESS.2019.2933178
– ident: ref55
  doi: 10.1109/LRA.2021.3066833
– ident: ref33
  doi: 10.15607/RSS.2021.XVII.011
– ident: ref19
  doi: 10.1109/ICRA.2016.7487541
– start-page: 91
  volume-title: Proc. Conf. Robot Learn.
  year: 2021
  ident: ref29
  article-title: Learning to walk in minutes using massively parallel deep reinforcement learning
– ident: ref62
  doi: 10.1177/0959651811402275
– ident: ref72
  doi: 10.1137/S1052623497325107
– ident: ref4
  doi: 10.1109/ICRA.2019.8793865
– ident: ref43
  doi: 10.1109/IROS.2009.5354701
– ident: ref63
  doi: 10.1007/978-3-319-26054-9_5
– ident: ref58
  doi: 10.1142/9789814525534_0056
– start-page: 1
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2013
  ident: ref66
  article-title: Rectifier non-linearities improve neural network acoustic models
– ident: ref6
  doi: 10.1109/IROS.2016.7758092
– ident: ref60
  doi: 10.1109/TRO.2015.2482061
– ident: ref13
  doi: 10.1109/IROS45743.2020.9341751
– ident: ref41
  doi: 10.1109/TRO.2018.2819658
– start-page: 8026
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  year: 2019
  ident: ref70
  article-title: PyTorch: An imperative style, high-performance deep learning library
– ident: ref47
  doi: 10.1109/LRA.2021.3088797
SSID ssj0024903
Score 2.533055
Snippet This article focuses on vision-based planning strategies for legged robots that separate locomotion planning into foothold selection and pose adaptation....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptation
Algorithms
Foot
Forward error correction
Legged locomotion
Legged robots
Locomotion
Optimization
optimization and optimal control
Planning
Robot dynamics
Robots
Strategy
Terrain
Trajectory
visual learning
whole-body motion planning and control
Title ViTAL: Vision-Based Terrain-Aware Locomotion for Legged Robots
URI https://ieeexplore.ieee.org/document/9966331
https://www.proquest.com/docview/2795805195
Volume 39
WOSCitedRecordID wos000912783200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1552-3098
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5q8aAHX1WsVsnBi2Da7G7a7HoQqlg8hCollt7CPktBGklT_fvubtKqKIKXkMMMhG8ymZnszHwAXATcxCGNQ1ObcHMhEPuEh9LXAkIGYcSj0tJxNBySyYQ-1cDVehZGKeWaz1Tb3rqzfJmJpf1V1rG5ObZD0xtR1CtntT736lHHgmw3ivk4oGR1JBnQTjJ6NIUgQm3syKvJtxDkOFV-fIhddBns_u-59sBOlUV6_dLs-6Cm5gdg-8tuwQa4Gc-Sfnztjd3wuH9ropX0EpVbSgi__85y5cWZyEoWH8-krl6splMjM8p4ViwOwfPgPrl78CuyBF8gCgtf9noBlZTbnixEtfFDpAVmIWeaB1oJorqS0whTIrtCYIyM59ltcAxBpqGG-AjU59lcHQMvYoQLRqWQWITcIKsJZ5IRhhUkJMRN0Fnhl4pqk7gltHhJXUUR0NQgnlrE0wrxJrhca7yWWzT-kG1YhNdyFbhN0FqZKK3cbJGiyCjYJLR78rvWKdiy_PBlq00L1It8qc7ApngrZov83L1BH1Oywfs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5KFdSDryrWZw5eBNNmd1Oz60GooijGKhLFW9inCNJIW_Xvu7tJq6IIXkIOMxC-yWRmsjPzAexGwsYhQ2Jbmwh7oYiEVMQqNBIhjlAiktLSadLr0YcHdlOD_cksjNbaN5_plrv1Z_mqkK_uV1nb5ebEDU1PdeIYR-W01udmPeZ5kN1OsZBEjI4PJSPWzm6vbSmIcYt4-mr6LQh5VpUfn2IfX84W_vdkizBf5ZFBtzT8EtR0fxnmvmwXbMDR_VPWTQ-Dez8-Hh7beKWCTA8cKUTYfecDHaSFLEoen8Amr0GqHx-tzG0hitFwBe7OTrOT87CiSwglZmgUqoODiCkmXFcWZsZ6IjaS8FhwIyKjJdUdJVhCGFUdKQnB1vfcPjiOETfIILIK9X7R12sQJJwKyZmSishYWGQNFVxxyolGlMakCe0xfrmsdok7Sovn3NcUEcst4rlDPK8Qb8LeROOl3KPxh2zDITyRq8BtwubYRHnlaMMcJ1bBpaGd9d-1dmDmPLtK8_Sid7kBs44tvmy82YT6aPCqt2Bavo2ehoNt_zZ9AJcQxUI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ViTAL%3A+Vision-Based+Terrain-Aware+Locomotion+for+Legged+Robots&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Fahmi%2C+Shamel&rft.au=Barasuol%2C+Victor&rft.au=Esteban%2C+Domingo&rft.au=Villarreal%2C+Octavio&rft.date=2023-04-01&rft.pub=IEEE&rft.issn=1552-3098&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1109%2FTRO.2022.3222958&rft.externalDocID=9966331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon