Whale Optimization Algorithm With Applications to Resource Allocation in Wireless Networks
Resource allocation plays a pivotal role in improving the performance of wireless and communication networks. However, the optimization of resource allocation is typically formulated as a mixed-integer non-linear programming (MINLP) problem, which is non-convex and NP-hard by nature. Usually, solvin...
Uložené v:
| Vydané v: | IEEE transactions on vehicular technology Ročník 69; číslo 4; s. 4285 - 4297 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9545, 1939-9359 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Resource allocation plays a pivotal role in improving the performance of wireless and communication networks. However, the optimization of resource allocation is typically formulated as a mixed-integer non-linear programming (MINLP) problem, which is non-convex and NP-hard by nature. Usually, solving such a problem is challenging and requires specific methods due to the major shortcomings of the traditional approaches, such as exponential computation complexity of global optimization, no performance optimality guarantee of heuristic schemes, and large training time and generating a standard dataset of machine learning based approaches. Whale optimization algorithm (WOA) has recently gained the attention of the research community as an efficient method to solve a variety of optimization problems. As an alternative to the existing methods, our main goal in this article is to study the applicability of WOA to solve resource allocation problems in wireless networks. First, we present the fundamental backgrounds and the binary version of the WOA as well as introducing a penalty method to handle optimization constraints. Then, we demonstrate three examples of WOA to resource allocation in wireless networks, including power allocation for energy-and-spectral efficiency tradeoff in wireless interference networks, power allocation for secure throughput maximization, and mobile edge computation offloading. Lastly, we present the adoption of WOA to solve a variety of potential resource allocation problems in 5G wireless networks and beyond. |
|---|---|
| AbstractList | Resource allocation plays a pivotal role in improving the performance of wireless and communication networks. However, the optimization of resource allocation is typically formulated as a mixed-integer non-linear programming (MINLP) problem, which is non-convex and NP-hard by nature. Usually, solving such a problem is challenging and requires specific methods due to the major shortcomings of the traditional approaches, such as exponential computation complexity of global optimization, no performance optimality guarantee of heuristic schemes, and large training time and generating a standard dataset of machine learning based approaches. Whale optimization algorithm (WOA) has recently gained the attention of the research community as an efficient method to solve a variety of optimization problems. As an alternative to the existing methods, our main goal in this article is to study the applicability of WOA to solve resource allocation problems in wireless networks. First, we present the fundamental backgrounds and the binary version of the WOA as well as introducing a penalty method to handle optimization constraints. Then, we demonstrate three examples of WOA to resource allocation in wireless networks, including power allocation for energy-and-spectral efficiency tradeoff in wireless interference networks, power allocation for secure throughput maximization, and mobile edge computation offloading. Lastly, we present the adoption of WOA to solve a variety of potential resource allocation problems in 5G wireless networks and beyond. |
| Author | Pham, Quoc-Viet Kumar, Neeraj Hwang, Won-Joo Alazab, Mamoun Mirjalili, Seyedali |
| Author_xml | – sequence: 1 givenname: Quoc-Viet orcidid: 0000-0002-9485-9216 surname: Pham fullname: Pham, Quoc-Viet email: vietpq@pusan.ac.kr organization: Research Institute of Computer, Information and Communication, Inje University to Pusan National University, Busan, South Korea – sequence: 2 givenname: Seyedali surname: Mirjalili fullname: Mirjalili, Seyedali email: ali.mirjalili@gmail.com, ali.mirjalili@laureate.edu.au organization: Center for Artificial Intelligence Research and Optimization, Torrens University Australia, Brisbane, Australia – sequence: 3 givenname: Neeraj orcidid: 0000-0002-3020-3947 surname: Kumar fullname: Kumar, Neeraj email: neeraj.kumar@thapar.edu organization: Department of Computer Science and Engineering, Thapar University, Patiala, India – sequence: 4 givenname: Mamoun orcidid: 0000-0002-1928-3704 surname: Alazab fullname: Alazab, Mamoun email: alazab.m@ieee.org organization: College of Engineering, IT and Environment, Charles Darwin University, Casuarina, NT, Australia – sequence: 5 givenname: Won-Joo orcidid: 0000-0001-8398-564X surname: Hwang fullname: Hwang, Won-Joo email: wjhwang@pusan.ac.kr organization: Department of Biomedical Convergence Engineering, Pusan National University, Busan, South Korea |
| BookMark | eNp9kM9LwzAUx4NMcJveBS8Fz5350Sx9xzH8BcOBFAdeSpumLrNrapIh-tebrcODBy955L3v9_34jNCgNa1C6JLgCSEYbrKXbEIxxRMKglFITtCQAIMYGIcBGmJM0hh4ws_QyLlN-CYJkCF6Xa2LRkXLzuut_i68Nm00a96M1X69jVbhjWZd12h5KLnIm-hZObOzUgVdY_p8pNugtapRzkVPyn8a--7O0WldNE5dHOMYZXe32fwhXizvH-ezRSwpEB9XPE0klaROuRAChKgLUMDKKqFcUQpMEimKCvMqnU5LkMBBiVKmPC2rGhI2Rtd9286aj51yPt-E9dowMacMKAl0OAkq3KukNc5ZVeed1dvCfuUE53uAeQCY7wHmR4DBMv1jkdofzvW20M1_xqveqJVSv3NSAJYmjP0AG9SAag |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2023_106249 crossref_primary_10_1016_j_jfranklin_2023_09_012 crossref_primary_10_1109_JIOT_2021_3103900 crossref_primary_10_1007_s00170_024_14231_1 crossref_primary_10_1007_s10586_022_03920_9 crossref_primary_10_1109_JIOT_2020_2988930 crossref_primary_10_1109_ACCESS_2024_3454810 crossref_primary_10_1109_TWC_2024_3505192 crossref_primary_10_1007_s11280_022_01082_7 crossref_primary_10_1109_TCOMM_2024_3379368 crossref_primary_10_1177_15501477211018140 crossref_primary_10_3390_s21082628 crossref_primary_10_1109_TNSE_2025_3551273 crossref_primary_10_3390_s22020451 crossref_primary_10_1109_JSAC_2024_3369665 crossref_primary_10_1016_j_rineng_2025_106961 crossref_primary_10_1109_TVT_2022_3173888 crossref_primary_10_3390_drones9090623 crossref_primary_10_1016_j_enconman_2020_113491 crossref_primary_10_1109_ACCESS_2024_3523464 crossref_primary_10_1002_dac_6141 crossref_primary_10_1016_j_compmedimag_2020_101812 crossref_primary_10_1109_ACCESS_2020_3031614 crossref_primary_10_1109_MWC_012_2200373 crossref_primary_10_1109_TMC_2023_3300314 crossref_primary_10_1007_s12083_021_01270_8 crossref_primary_10_3390_s23239608 crossref_primary_10_1016_j_phycom_2025_102701 crossref_primary_10_1016_j_eswa_2022_117395 crossref_primary_10_1109_ACCESS_2020_3039242 crossref_primary_10_1109_JSYST_2021_3063508 crossref_primary_10_1177_17483026211034442 crossref_primary_10_1007_s00477_020_01924_8 crossref_primary_10_1109_JIOT_2024_3424782 crossref_primary_10_1007_s42107_024_00987_0 crossref_primary_10_1016_j_scs_2021_102858 crossref_primary_10_3390_fi15110357 crossref_primary_10_1016_j_phycom_2025_102818 crossref_primary_10_1038_s41598_025_12307_w crossref_primary_10_3390_automation6030040 crossref_primary_10_1109_JSEN_2025_3551916 crossref_primary_10_1109_TWC_2022_3207923 crossref_primary_10_1016_j_asoc_2021_107813 crossref_primary_10_1177_01423312211042009 crossref_primary_10_1186_s13634_021_00751_5 crossref_primary_10_1007_s12065_022_00717_y crossref_primary_10_2478_mspe_2025_0010 crossref_primary_10_1016_j_jnca_2021_103141 crossref_primary_10_1038_s41598_024_54990_1 crossref_primary_10_3390_s22197297 crossref_primary_10_1016_j_comcom_2021_07_004 crossref_primary_10_1016_j_cie_2021_107224 crossref_primary_10_1016_j_oceaneng_2023_116238 crossref_primary_10_1186_s44147_025_00740_7 crossref_primary_10_1007_s00500_023_08783_9 crossref_primary_10_1109_JIOT_2022_3233667 crossref_primary_10_1109_ACCESS_2024_3404473 crossref_primary_10_1016_j_seta_2020_100973 crossref_primary_10_1016_j_adhoc_2021_102596 crossref_primary_10_3390_s23156796 crossref_primary_10_1049_cmu2_12545 crossref_primary_10_3390_su141912080 crossref_primary_10_1016_j_micpro_2023_104935 crossref_primary_10_1080_0305215X_2021_1969560 crossref_primary_10_1007_s11227_022_04814_8 crossref_primary_10_3390_s21051583 crossref_primary_10_3233_JIFS_221295 crossref_primary_10_1016_j_heliyon_2022_e09399 crossref_primary_10_3390_en16155644 crossref_primary_10_3390_jsan13060073 crossref_primary_10_1016_j_ifacol_2022_05_010 crossref_primary_10_1007_s11227_022_04801_z crossref_primary_10_1007_s12065_022_00762_7 crossref_primary_10_3390_electronics12071559 crossref_primary_10_1109_TVT_2021_3074820 crossref_primary_10_1080_10298436_2023_2191198 crossref_primary_10_4018_IJISSCM_305851 crossref_primary_10_1109_ACCESS_2023_3307492 crossref_primary_10_1016_j_jobe_2023_107260 crossref_primary_10_1016_j_jocs_2024_102323 crossref_primary_10_3390_math11173674 crossref_primary_10_1007_s11042_020_09988_y crossref_primary_10_1109_ACCESS_2023_3335247 crossref_primary_10_3390_electronics12040973 crossref_primary_10_1109_TMC_2024_3461719 crossref_primary_10_1016_j_asoc_2020_106349 crossref_primary_10_1109_ACCESS_2020_2997925 crossref_primary_10_1007_s00500_023_09219_0 crossref_primary_10_4018_IJAMC_2022010109 crossref_primary_10_1109_TCOMM_2024_3516479 crossref_primary_10_1016_j_dt_2024_09_006 crossref_primary_10_3390_electronics10040511 crossref_primary_10_4018_JCIT_371753 crossref_primary_10_1109_TCYB_2020_3000440 crossref_primary_10_1016_j_matcom_2021_07_010 crossref_primary_10_1016_j_comnet_2023_109575 crossref_primary_10_1016_j_asoc_2023_110701 crossref_primary_10_1007_s10489_021_02605_x crossref_primary_10_1007_s11227_023_05263_7 crossref_primary_10_1007_s11277_021_09249_7 crossref_primary_10_3390_en16135174 crossref_primary_10_3390_math12101493 crossref_primary_10_1016_j_epsr_2024_110605 crossref_primary_10_1049_cth2_12572 crossref_primary_10_1186_s13677_021_00264_4 crossref_primary_10_1007_s40747_021_00467_x crossref_primary_10_1016_j_compstruct_2023_116764 crossref_primary_10_3390_electronics11193207 crossref_primary_10_3390_e24101366 crossref_primary_10_1109_TITS_2022_3182651 crossref_primary_10_1109_JIOT_2021_3082161 crossref_primary_10_1109_TGCN_2022_3143991 crossref_primary_10_1093_jcde_qwaf050 crossref_primary_10_1109_TETCI_2024_3437202 crossref_primary_10_1371_journal_pone_0252754 crossref_primary_10_3390_s23187707 crossref_primary_10_3390_sym16020233 crossref_primary_10_1109_TITS_2023_3257484 crossref_primary_10_1109_TNSM_2022_3208522 crossref_primary_10_1109_TEMC_2023_3327576 crossref_primary_10_1016_j_vehcom_2023_100679 crossref_primary_10_1007_s10462_024_11104_7 crossref_primary_10_1007_s10462_022_10328_9 crossref_primary_10_3390_electronics12081818 crossref_primary_10_3390_s24186123 crossref_primary_10_1016_j_knosys_2021_107020 crossref_primary_10_20965_jrm_2024_p0889 crossref_primary_10_1016_j_phycom_2024_102467 crossref_primary_10_1109_JIOT_2023_3306375 crossref_primary_10_1109_JSYST_2020_3029807 crossref_primary_10_1109_MCOM_022_2300099 crossref_primary_10_1109_TCSII_2024_3351848 crossref_primary_10_1109_TVT_2023_3328636 crossref_primary_10_1109_TWC_2024_3400843 crossref_primary_10_1007_s00500_023_09351_x crossref_primary_10_1016_j_phycom_2024_102351 crossref_primary_10_1007_s41870_025_02494_0 crossref_primary_10_1109_TVT_2024_3368019 crossref_primary_10_3389_fphy_2023_1292702 crossref_primary_10_1109_TEC_2025_3543312 crossref_primary_10_1016_j_seta_2021_101860 crossref_primary_10_1016_j_asoc_2022_109468 crossref_primary_10_1007_s11277_022_09688_w crossref_primary_10_1155_2023_5800673 crossref_primary_10_1016_j_geoen_2024_213460 crossref_primary_10_32604_cmc_2023_037611 crossref_primary_10_1109_ACCESS_2023_3258187 crossref_primary_10_1109_JIOT_2023_3306353 crossref_primary_10_3390_math9131477 crossref_primary_10_1007_s11036_023_02230_7 crossref_primary_10_1109_JIOT_2021_3097068 crossref_primary_10_1007_s11071_023_08534_3 crossref_primary_10_1007_s40435_024_01502_8 crossref_primary_10_1016_j_adhoc_2024_103565 crossref_primary_10_1109_ACCESS_2021_3100541 crossref_primary_10_3390_sym16091173 crossref_primary_10_1007_s00521_023_08242_4 crossref_primary_10_3390_a15060189 crossref_primary_10_1007_s11042_022_13462_2 crossref_primary_10_1016_j_comcom_2022_02_018 crossref_primary_10_1186_s13634_022_00965_1 crossref_primary_10_3390_drones8060218 crossref_primary_10_1016_j_actaastro_2025_09_005 crossref_primary_10_1109_TII_2020_3024611 crossref_primary_10_1109_ACCESS_2020_3001277 crossref_primary_10_1016_j_jnca_2021_102993 crossref_primary_10_1002_dac_5771 crossref_primary_10_1109_TVT_2021_3094273 crossref_primary_10_1109_TNSM_2025_3562516 crossref_primary_10_3390_machines11090851 crossref_primary_10_1007_s11227_022_04821_9 crossref_primary_10_1109_TMC_2025_3571023 crossref_primary_10_1002_oca_2983 crossref_primary_10_1002_cpe_8132 crossref_primary_10_1109_JSYST_2021_3136208 crossref_primary_10_1016_j_adhoc_2024_103474 crossref_primary_10_1007_s11518_024_5608_x crossref_primary_10_3390_jeta3020017 crossref_primary_10_1007_s00521_023_08287_5 crossref_primary_10_1016_j_csi_2021_103518 crossref_primary_10_1016_j_ins_2023_119954 crossref_primary_10_1109_ACCESS_2022_3165035 crossref_primary_10_1007_s00521_023_08358_7 crossref_primary_10_1007_s13369_021_05964_2 crossref_primary_10_1088_1402_4896_ad1377 crossref_primary_10_1109_TNET_2023_3263538 crossref_primary_10_1007_s10586_020_03162_7 crossref_primary_10_1016_j_jer_2024_01_018 crossref_primary_10_3390_s25165086 crossref_primary_10_1109_TVT_2021_3109265 crossref_primary_10_1109_TNET_2023_3278456 crossref_primary_10_32604_cmc_2023_038838 crossref_primary_10_1109_TCOMM_2024_3354815 crossref_primary_10_1016_j_swevo_2024_101768 crossref_primary_10_3390_drones7080513 crossref_primary_10_1007_s11554_020_00987_8 crossref_primary_10_1109_TETC_2023_3344133 |
| Cites_doi | 10.1109/MNET.2019.1800418 10.1109/ACCESS.2019.2898645 10.1007/s11047-009-9175-3 10.1109/MWC.2016.1500356WC 10.1109/TVT.2018.2802900 10.1109/COMST.2016.2532458 10.1109/TWC.2018.2815626 10.1504/IJMHEUR.2018.091880 10.1016/j.swevo.2012.09.002 10.1109/ACCESS.2019.2938857 10.1109/TVT.2019.2956224 10.1109/COMST.2016.2516538 10.1016/j.conbuildmat.2018.06.081 10.1109/TVT.2017.2717926 10.1016/j.jesit.2018.03.004 10.1109/TWC.2017.2688328 10.1016/j.advengsoft.2016.01.008 10.1155/2017/1821084 10.1109/TWC.2017.2756644 10.1016/j.swevo.2011.10.001 10.1109/ACCESS.2018.2883692 10.1007/s00500-016-2442-1 10.1016/j.jesit.2018.02.008 10.1109/TCOMM.2014.2363092 10.1109/COMST.2018.2867268 10.1109/ACCESS.2018.2882800 10.1016/j.jcde.2017.12.006 10.1109/TWC.2013.040413.120676 10.1007/s13042-017-0731-3 10.1109/COMST.2016.2619485 10.1109/4235.873238 10.1109/TVT.2018.2811942 10.1109/TVT.2016.2593486 10.1109/LCOMM.2013.082613.131286 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2020.2973294 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 4297 |
| ExternalDocumentID | 10_1109_TVT_2020_2973294 8993843 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 10.13039/501100003725 – fundername: Korea Government grantid: NRF-2019R1I1A3A01060518; NRF-2019R1C1C1006143 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c291t-d584c2c1f85777977fa9e93bd425e2293c1c7ad05d866b9c959e7bc858bdf943 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 242 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530284400063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 10:22:32 EDT 2025 Sat Nov 29 02:18:42 EST 2025 Tue Nov 18 20:52:06 EST 2025 Wed Aug 27 02:42:22 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-d584c2c1f85777977fa9e93bd425e2293c1c7ad05d866b9c959e7bc858bdf943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9485-9216 0000-0002-3020-3947 0000-0002-1928-3704 0000-0001-8398-564X |
| PQID | 2392111051 |
| PQPubID | 85454 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TVT_2020_2973294 proquest_journals_2392111051 ieee_primary_8993843 crossref_citationtrail_10_1109_TVT_2020_2973294 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 pham (ref7) 2019 ref32 ref10 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref21 kumar (ref13) 2018 ref28 yang (ref22) 2014 ref27 khalilpourazari (ref11) 2018 ref29 ref8 ref9 ref4 ref3 ref6 ref5 pochet (ref2) 2006 |
| References_xml | – ident: ref31 doi: 10.1109/MNET.2019.1800418 – ident: ref29 doi: 10.1109/ACCESS.2019.2898645 – ident: ref20 doi: 10.1007/s11047-009-9175-3 – ident: ref6 doi: 10.1109/MWC.2016.1500356WC – ident: ref4 doi: 10.1109/TVT.2018.2802900 – year: 2006 ident: ref2 publication-title: Production Planning by Mixed Integer Programming – ident: ref30 doi: 10.1109/COMST.2016.2532458 – ident: ref25 doi: 10.1109/TWC.2018.2815626 – ident: ref14 doi: 10.1504/IJMHEUR.2018.091880 – ident: ref21 doi: 10.1016/j.swevo.2012.09.002 – ident: ref16 doi: 10.1109/ACCESS.2019.2938857 – ident: ref33 doi: 10.1109/TVT.2019.2956224 – ident: ref36 doi: 10.1109/COMST.2016.2516538 – ident: ref9 doi: 10.1016/j.conbuildmat.2018.06.081 – ident: ref27 doi: 10.1109/TVT.2017.2717926 – year: 2014 ident: ref22 publication-title: Nature-inspired Algorithms for Optimization – ident: ref10 doi: 10.1016/j.jesit.2018.03.004 – ident: ref38 doi: 10.1109/TWC.2017.2688328 – ident: ref12 doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref3 doi: 10.1155/2017/1821084 – ident: ref5 doi: 10.1109/TWC.2017.2756644 – ident: ref23 doi: 10.1016/j.swevo.2011.10.001 – ident: ref1 doi: 10.1109/ACCESS.2018.2883692 – ident: ref18 doi: 10.1007/s00500-016-2442-1 – start-page: 1 year: 2018 ident: ref13 article-title: Binary whale optimization algorithm and its application to unit commitment problem publication-title: Neural Comput Appl – ident: ref8 doi: 10.1016/j.jesit.2018.02.008 – ident: ref37 doi: 10.1109/TCOMM.2014.2363092 – ident: ref34 doi: 10.1109/COMST.2018.2867268 – ident: ref32 doi: 10.1109/ACCESS.2018.2882800 – ident: ref17 doi: 10.1016/j.jcde.2017.12.006 – start-page: 1 year: 2018 ident: ref11 article-title: Robust possibilistic programming for multi-item EOQ model with defective supply batches: Whale optimization and water cycle algorithms publication-title: Neural Comput Appl – ident: ref35 doi: 10.1109/TWC.2013.040413.120676 – ident: ref15 doi: 10.1007/s13042-017-0731-3 – ident: ref19 doi: 10.1109/COMST.2016.2619485 – ident: ref24 doi: 10.1109/4235.873238 – ident: ref39 doi: 10.1109/TVT.2018.2811942 – ident: ref28 doi: 10.1109/TVT.2016.2593486 – year: 2019 ident: ref7 article-title: A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-Art – ident: ref26 doi: 10.1109/LCOMM.2013.082613.131286 |
| SSID | ssj0014491 |
| Score | 2.6815426 |
| Snippet | Resource allocation plays a pivotal role in improving the performance of wireless and communication networks. However, the optimization of resource allocation... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4285 |
| SubjectTerms | Algorithms Communication networks Communication system security Computation offloading Edge computing Global optimization Heuristic algorithms Linear programming Machine learning meta-heuristic optimization Mobile computing non-orthogonal multiple access Nonlinear programming Optimization Optimization algorithms Resource allocation Resource management whale optimization algorithm Whales Wireless and communication networks Wireless communications Wireless networks |
| Title | Whale Optimization Algorithm With Applications to Resource Allocation in Wireless Networks |
| URI | https://ieeexplore.ieee.org/document/8993843 https://www.proquest.com/docview/2392111051 |
| Volume | 69 |
| WOSCitedRecordID | wos000530284400063&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4A8aAHX2hE0ezBi4mFdvvY3SMxEk_ogQjx0nQfFRIoBoq_39m2EIzGxEvTw27TzOx-M7Mzsx_ArZHaQ5BjTiC0jwEK145008hRMoqMn2BAwZKCbIINBnw8Fi81uN_2whhjiuIz07GvRS5fL9TaHpV1MTbweeDXoc5YVPZqbTMGQVCx43m4gdEt2KQkXdEdvg4xEKRux_I0URF8M0EFp8oPIC6sS__of_91DIeVF0l6pdpPoGayUzjYuVuwCW-jCWI_eUZImFe9lqQ3e18sp_lkTkb4JL2d5DXJF2RzlI_jrIkrpkwzYgtkZwiIZFCWjK_OYNh_HD48ORWRgqOo8HJHo5ehqPJSHjLG0ONLE2GELzVuWEPR4CtPsUS7oeZRJIUSoTBMKh5yqVMR-OfQyBaZuQDicmnrTiNGExaYRHJqBPU0DzVLwzCkLehuRBur6pJxy3Uxi4tgwxUxKiO2yogrZbTgbjvjo7xg44-xTSv87bhK7i1ob7QXVztwFVN0_BDHEXMuf591Bfv222UVThsa-XJtrmFPfebT1fKmWFxfVgbMyA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGQwIOvAZiMCAHLkiUtekjyXFCIBAwOFQwcamaR2HS2NBW-P04XTaBQEhcqh4ctYrjz3bs5AM4MlIHCHLMi4QOMUHh2pN-kXhKJokJc0woWF6RTbBOh3e74r4GJ7OzMMaYqvnMnNrXqpavh-rdbpW1MDcIeRTOwYJlznKntWY1gyhy_HgBmjAGBtOipC9a6UOKqSD1Ty1TExXRNydUsar8gOLKv1ys_e_P1mHVxZGkPVH8BtTMYBNWvtwuWIenxxdEf3KHoPDqTluSdv95OOqVL6_kEZ-k_aV8TcohmW7mo5x1ctWQ3oDYFtk-QiLpTJrGx1uQXpynZ5eeo1LwFBVB6WmMMxRVQcFjxhjGfEUujAilRpM1FF2-ChTLtR9rniRSKBELw6TiMZe6EFG4DfOD4cDsAPG5tJ2nCaM5i0wuOTWCBprHmhVxHNMGtKZTmyl3zbhlu-hnVbrhiwyVkVllZE4ZDTiejXibXLHxh2zdTv5Mzs17A5pT7WXOBscZxdAPkRxRZ_f3UYewdJne3mQ3V53rPVi235n05DRhvhy9m31YVB9lbzw6qBbaJytF0BE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whale+Optimization+Algorithm+With+Applications+to+Resource+Allocation+in+Wireless+Networks&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Pham%2C+Quoc-Viet&rft.au=Mirjalili%2C+Seyedali&rft.au=Kumar%2C+Neeraj&rft.au=Alazab%2C+Mamoun&rft.date=2020-04-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=69&rft.issue=4&rft.spage=4285&rft.epage=4297&rft_id=info:doi/10.1109%2FTVT.2020.2973294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2020_2973294 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |