Optical Fiber Fault Detection and Localization in a Noisy OTDR Trace Based on Denoising Convolutional Autoencoder and Bidirectional Long Short-Term Memory

Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces are prone to be distorted by different kinds of noise, causing blurring of the backscattered signals, and thereby leading to a misleading inte...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology Vol. 40; no. 8; pp. 2254 - 2264
Main Authors: Abdelli, Khouloud, Grieser, Helmut, Tropschug, Carsten, Pachnicke, Stephan
Format: Journal Article
Language:English
Published: New York IEEE 15.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0733-8724, 1558-2213
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces are prone to be distorted by different kinds of noise, causing blurring of the backscattered signals, and thereby leading to a misleading interpretation and a more cumbersome event detection task. To address this problem, a novel method combining a denoising convolutional autoencoder (DCAE) and a bidirectional long short-term memory (BiLSTM) is proposed, whereby the former is used for noise removal of OTDR signals and the latter for fault detection, localization, and diagnosis with the denoised signal as input. The proposed approach is applied to noisy OTDR signals of different levels of input SNR ranging from −5 dB to 15 dB. The experimental results demonstrate that: (i) the DCAE is efficient in denoising the OTDR traces and it outperforms other deep learning techniques and the conventional denoising methods; and (ii) the BiLSTM achieves a high detection and diagnostic accuracy of 96.7% with an improvement of 13.74% compared to the performance of the same model trained with noisy OTDR signals.
AbstractList Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces are prone to be distorted by different kinds of noise, causing blurring of the backscattered signals, and thereby leading to a misleading interpretation and a more cumbersome event detection task. To address this problem, a novel method combining a denoising convolutional autoencoder (DCAE) and a bidirectional long short-term memory (BiLSTM) is proposed, whereby the former is used for noise removal of OTDR signals and the latter for fault detection, localization, and diagnosis with the denoised signal as input. The proposed approach is applied to noisy OTDR signals of different levels of input SNR ranging from −5 dB to 15 dB. The experimental results demonstrate that: (i) the DCAE is efficient in denoising the OTDR traces and it outperforms other deep learning techniques and the conventional denoising methods; and (ii) the BiLSTM achieves a high detection and diagnostic accuracy of 96.7% with an improvement of 13.74% compared to the performance of the same model trained with noisy OTDR signals.
Author Tropschug, Carsten
Pachnicke, Stephan
Grieser, Helmut
Abdelli, Khouloud
Author_xml – sequence: 1
  givenname: Khouloud
  orcidid: 0000-0002-3076-527X
  surname: Abdelli
  fullname: Abdelli, Khouloud
  email: kabdelli@advaoptical.com
  organization: ADVA Optical Networking SE, Munich/ Martinsried, Germany
– sequence: 2
  givenname: Helmut
  surname: Grieser
  fullname: Grieser, Helmut
  email: hgriesser@adva.com
  organization: ADVA Optical Networking SE, Munich/Martinsried, Germany
– sequence: 3
  givenname: Carsten
  surname: Tropschug
  fullname: Tropschug, Carsten
  email: ctropschug@adva.com
  organization: ADVA Optical Networking SE, Munich/Martinsried, Germany
– sequence: 4
  givenname: Stephan
  orcidid: 0000-0001-7321-7938
  surname: Pachnicke
  fullname: Pachnicke, Stephan
  email: stephan.pachnicke@tf.uni-kiel.de
  organization: Chair of Communications, Kiel University (CAU), Kiel, Germany
BookMark eNp9kUGP0zAQhS20SHQX7khcLHFO12PHjnPcbbewKFAJwjlynSl4lcbFdpDKT-HX4mxXHDhwsCzNe98by--SXIx-REJeA1sCsPr6Q9MuOeOwFCA0V_oZWYCUuuAcxAVZsEqIQle8fEEuY3xgDMpSVwvye3tMzpqBbtwOA92YaUh0jQltcn6kZuxp47PufpnHgcsz-sm7eKLbdv2ZtsFYpLcmYk-zvMYxa278Rld-_OmHaYZy-s2UPI7W93nHnHnrehfOO7La-Ax8-e5DKloMB_oRDz6cXpLnezNEfPV0X5Gvm7t29b5otu_uVzdNYXkNqeilMFLtd4ZJCdbqGhS3vRCoGUeodAmw6_f59Kw0vNyBkEzXwhiFAiQKcUXennOPwf-YMKbuwU8hvyt2XJVVyZWE2aXOLht8jAH3nXXp8U9SMG7ogHVzD13uoZt76J56yCD7BzwGdzDh9D_kzRlxiPjXXislGGjxB6PTlgc
CODEN JLTEDG
CitedBy_id crossref_primary_10_1109_LSENS_2025_3560144
crossref_primary_10_1360_SSI_2024_0118
crossref_primary_10_1016_j_optlastec_2023_109417
crossref_primary_10_1016_j_yofte_2024_103885
crossref_primary_10_3390_s23146402
crossref_primary_10_1364_OL_566608
crossref_primary_10_1134_S0020441224700325
crossref_primary_10_1364_JOCN_502937
crossref_primary_10_1364_JOCN_480970
crossref_primary_10_1016_j_yofte_2024_104047
crossref_primary_10_1016_j_optlastec_2024_111952
crossref_primary_10_1364_AO_476614
crossref_primary_10_1109_OJCOMS_2025_3581480
crossref_primary_10_3390_s25144284
crossref_primary_10_1364_JOCN_451289
crossref_primary_10_3390_s25051407
crossref_primary_10_1364_JOCN_517529
crossref_primary_10_1109_JLT_2025_3554628
crossref_primary_10_1109_JLT_2025_3579518
crossref_primary_10_3390_electronics12173728
crossref_primary_10_1049_2024_5512014
crossref_primary_10_3390_photonics10070822
crossref_primary_10_1364_JOCN_550933
Cites_doi 10.1364/OE.22.000325
10.1109/LSP.2015.2406314
10.1109/OFC.1998.657350
10.1007/s10479-011-0841-3
10.1364/JOCN.423625
10.1109/ICTC51749.2021.9441614
10.1007/978-981-10-3229-5_47
10.1109/MCOM.2011.5706313
10.3847/1538-3881/aaf101
10.1145/1390156.1390294
10.1364/OFC.2021.M3C.7
10.23919/EUSIPCO.2019.8902833
10.1109/ECOC52684.2021.9605969
10.1016/j.jcp.2020.109913
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1109/JLT.2021.3138268
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1558-2213
EndPage 2264
ExternalDocumentID 10_1109_JLT_2021_3138268
9663018
Genre orig-research
GrantInformation_xml – fundername: AI-NET-PROTECT
  grantid: C2019/3-4
– fundername: German Federal Ministry of Education and Research
  grantid: FKZ16KIS1279K
– fundername: CELTIC-NEXT
GroupedDBID -~X
0R~
29K
4.4
5GY
6IK
85S
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
AEDJG
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
D-I
DSZJF
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OFLFD
OPJBK
P2P
RIA
RIE
RNS
ROL
ROS
TN5
TR6
ZCA
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c291t-d53a56fba0551cc89162cd33e802e178411bdf1bdd04a24b1350893aa6e315e33
IEDL.DBID RIE
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778946100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8724
IngestDate Mon Jun 30 10:19:30 EDT 2025
Tue Nov 18 22:30:41 EST 2025
Sat Nov 29 02:11:35 EST 2025
Wed Aug 27 02:40:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-d53a56fba0551cc89162cd33e802e178411bdf1bdd04a24b1350893aa6e315e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7321-7938
0000-0002-3076-527X
PQID 2647426513
PQPubID 85485
PageCount 11
ParticipantIDs ieee_primary_9663018
proquest_journals_2647426513
crossref_primary_10_1109_JLT_2021_3138268
crossref_citationtrail_10_1109_JLT_2021_3138268
PublicationCentury 2000
PublicationDate 2022-04-15
PublicationDateYYYYMMDD 2022-04-15
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of lightwave technology
PublicationTitleAbbrev JLT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref16
ref8
ref9
ref4
ref3
ref5
Abdelli (ref7)
Abdelli (ref6)
References_xml – ident: ref1
  doi: 10.1364/OE.22.000325
– ident: ref14
  doi: 10.1109/LSP.2015.2406314
– ident: ref3
  doi: 10.1109/OFC.1998.657350
– ident: ref16
  doi: 10.1007/s10479-011-0841-3
– ident: ref4
  doi: 10.1364/JOCN.423625
– ident: ref5
  doi: 10.1109/ICTC51749.2021.9441614
– ident: ref8
  doi: 10.1007/978-981-10-3229-5_47
– ident: ref2
  doi: 10.1109/MCOM.2011.5706313
– ident: ref9
  doi: 10.3847/1538-3881/aaf101
– ident: ref12
  doi: 10.1145/1390156.1390294
– volume-title: Proc. Opt. Fiber Commun. Conf. Exhib.
  ident: ref6
  article-title: A BiLSTM-CNN based multitask learning approach for fiber fault diagnosis
  doi: 10.1364/OFC.2021.M3C.7
– ident: ref11
  doi: 10.23919/EUSIPCO.2019.8902833
– ident: ref15
  doi: 10.1109/ECOC52684.2021.9605969
– start-page: 1
  volume-title: Proc. Photon. Netw., 22th ITG Symp.
  ident: ref7
  article-title: Convolutional neural networks for reflective event detection and characterization in fiber optical links given noisy OTDR signals
– ident: ref10
  doi: 10.1016/j.jcp.2020.109913
– ident: ref13
  doi: 10.1162/neco.1997.9.8.1735
SSID ssj0014487
Score 2.5643685
Snippet Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2254
SubjectTerms Backscattering
Bidirectional long short-term memory
Blurring
Computer architecture
Convolution
convolutional autoencoder
Decoding
denoising
Fault detection
Fault location
Fiber optics
intelligent fault detection and diagnosis
Localization
Logic gates
Microprocessors
Noise reduction
Optical fibers
Optical memory (data storage)
OTDR (optical time domain reflectometry)
Short term
Title Optical Fiber Fault Detection and Localization in a Noisy OTDR Trace Based on Denoising Convolutional Autoencoder and Bidirectional Long Short-Term Memory
URI https://ieeexplore.ieee.org/document/9663018
https://www.proquest.com/docview/2647426513
Volume 40
WOSCitedRecordID wos000778946100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2213
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014487
  issn: 0733-8724
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-wwFD6oKLjxeeWOL7JwI1inTdpJu1THQWQcRUdwV_Iqd0BasR3Bv-Kv9STNDIhywUWhNEkbOEm_7-S8AI5kzLOEMxFImqRBLAoVCCGKoFf0isxajoxoi03w0Sh9esruFuBkHgtjjHHOZ-bU3jpbvq7U1B6VdZGa43pMF2GRc97Gas0tBqhmuNBozhjucBrPTJJh1r0ejlERpBHqpwzZdPoFglxNlW8_Yocug_XfzWsD1jyLJGet2DdhwZRbsO4ZJfH7td6CFefgqept-Lh9cafWZGBdRMhATJ8b0jeN88QqiSg1GVpY82GZZILPyKia1O_kdty_J4hpypBzxDxNsLlvSmxD2CMXVfnml6-d0bSpbGpMjd-w7zyftJjZtg4rHPDwDxl_MEZEIDfWzff9DzwOLscXV4GvyxAomkVNoBMmkl4hRYh0S6kUGSZVmjGThtRE1pAZSV3gpcNY0FhGDFlgxoToGRYlhrEdWCqr0vwFEqU6ZKKg0qXFZ0amUlMdKiZt6XPNO9CdiSpXPmm5rZ3xnDvlJcxyFG5uhZt74XbgeD7ipU3Y8Z--21aY835ejh3Yn62G3O_oOkfiyJHNJBHb_XnUHqxSGxph80Am-7DUvE7NASyrt2ZSvx66xfoJN4zn0w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SNCW9JM2LbpO2OuRSqLuWZK_tY5PtkjbOprQu5Gb0MllY7BB7A_kr_bUdydqF0BDIwWAsyRaM5O8bzQvgWEZJFidcBJLFaRCJSgVCiCoYVaMqs5YjI_piE8l0ml5dZT_X4PMqFsYY45zPzBd762z5ulELe1Q2RGqO6zF9AS_jKGK0j9Za2QxQ0XDB0QnnuMdZtDRKhtnwR16gKsgoaqgc-XT6AIRcVZX_fsUOXybbz5vZG9jyPJJ87QW_A2um3oVtzymJ37HtLrxyLp6q3YO_lzfu3JpMrJMImYjFvCNj0zlfrJqIWpPcApsPzCQzfEamzay9J5fF-BdBVFOGnCDqaYLNY1NjGwIfOW3qO7-A7YwWXWOTY2r8hn3nyaxHzb41b3DA72vk_EGBmEAurKPv_T78mXwrTs8CX5khUCyjXaBjLuJRJUWIhEupFDkmU5pzk4bMUGvKpFJXeOkwEiySlCMPzLgQI8NpbDg_gPW6qc1bIDTVIRcVky4xPjcylZrpUHFpi5_rZADDpahK5dOW2-oZ89KpL2FWonBLK9zSC3cAn1YjbvqUHU_03bPCXPXzchzA0XI1lH5PtyVSxwT5TEz5u8dHfYTNs-IiL_Pv0_NDeM1soITNChkfwXp3uzDvYUPddbP29oNbuP8AadnrGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+Fiber+Fault+Detection+and+Localization+in+a+Noisy+OTDR+Trace+Based+on+Denoising+Convolutional+Autoencoder+and+Bidirectional+Long+Short-Term+Memory&rft.jtitle=Journal+of+lightwave+technology&rft.au=Abdelli%2C+Khouloud&rft.au=Grieser%2C+Helmut&rft.au=Tropschug%2C+Carsten&rft.au=Pachnicke%2C+Stephan&rft.date=2022-04-15&rft.pub=IEEE&rft.issn=0733-8724&rft.volume=40&rft.issue=8&rft.spage=2254&rft.epage=2264&rft_id=info:doi/10.1109%2FJLT.2021.3138268&rft.externalDocID=9663018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon