Optical Fiber Fault Detection and Localization in a Noisy OTDR Trace Based on Denoising Convolutional Autoencoder and Bidirectional Long Short-Term Memory
Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces are prone to be distorted by different kinds of noise, causing blurring of the backscattered signals, and thereby leading to a misleading inte...
Uloženo v:
| Vydáno v: | Journal of lightwave technology Ročník 40; číslo 8; s. 2254 - 2264 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
15.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0733-8724, 1558-2213 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces are prone to be distorted by different kinds of noise, causing blurring of the backscattered signals, and thereby leading to a misleading interpretation and a more cumbersome event detection task. To address this problem, a novel method combining a denoising convolutional autoencoder (DCAE) and a bidirectional long short-term memory (BiLSTM) is proposed, whereby the former is used for noise removal of OTDR signals and the latter for fault detection, localization, and diagnosis with the denoised signal as input. The proposed approach is applied to noisy OTDR signals of different levels of input SNR ranging from −5 dB to 15 dB. The experimental results demonstrate that: (i) the DCAE is efficient in denoising the OTDR traces and it outperforms other deep learning techniques and the conventional denoising methods; and (ii) the BiLSTM achieves a high detection and diagnostic accuracy of 96.7% with an improvement of 13.74% compared to the performance of the same model trained with noisy OTDR signals. |
|---|---|
| AbstractList | Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces are prone to be distorted by different kinds of noise, causing blurring of the backscattered signals, and thereby leading to a misleading interpretation and a more cumbersome event detection task. To address this problem, a novel method combining a denoising convolutional autoencoder (DCAE) and a bidirectional long short-term memory (BiLSTM) is proposed, whereby the former is used for noise removal of OTDR signals and the latter for fault detection, localization, and diagnosis with the denoised signal as input. The proposed approach is applied to noisy OTDR signals of different levels of input SNR ranging from −5 dB to 15 dB. The experimental results demonstrate that: (i) the DCAE is efficient in denoising the OTDR traces and it outperforms other deep learning techniques and the conventional denoising methods; and (ii) the BiLSTM achieves a high detection and diagnostic accuracy of 96.7% with an improvement of 13.74% compared to the performance of the same model trained with noisy OTDR signals. |
| Author | Tropschug, Carsten Pachnicke, Stephan Grieser, Helmut Abdelli, Khouloud |
| Author_xml | – sequence: 1 givenname: Khouloud orcidid: 0000-0002-3076-527X surname: Abdelli fullname: Abdelli, Khouloud email: kabdelli@advaoptical.com organization: ADVA Optical Networking SE, Munich/ Martinsried, Germany – sequence: 2 givenname: Helmut surname: Grieser fullname: Grieser, Helmut email: hgriesser@adva.com organization: ADVA Optical Networking SE, Munich/Martinsried, Germany – sequence: 3 givenname: Carsten surname: Tropschug fullname: Tropschug, Carsten email: ctropschug@adva.com organization: ADVA Optical Networking SE, Munich/Martinsried, Germany – sequence: 4 givenname: Stephan orcidid: 0000-0001-7321-7938 surname: Pachnicke fullname: Pachnicke, Stephan email: stephan.pachnicke@tf.uni-kiel.de organization: Chair of Communications, Kiel University (CAU), Kiel, Germany |
| BookMark | eNp9kUGP0zAQhS20SHQX7khcLHFO12PHjnPcbbewKFAJwjlynSl4lcbFdpDKT-HX4mxXHDhwsCzNe98by--SXIx-REJeA1sCsPr6Q9MuOeOwFCA0V_oZWYCUuuAcxAVZsEqIQle8fEEuY3xgDMpSVwvye3tMzpqBbtwOA92YaUh0jQltcn6kZuxp47PufpnHgcsz-sm7eKLbdv2ZtsFYpLcmYk-zvMYxa278Rld-_OmHaYZy-s2UPI7W93nHnHnrehfOO7La-Ax8-e5DKloMB_oRDz6cXpLnezNEfPV0X5Gvm7t29b5otu_uVzdNYXkNqeilMFLtd4ZJCdbqGhS3vRCoGUeodAmw6_f59Kw0vNyBkEzXwhiFAiQKcUXennOPwf-YMKbuwU8hvyt2XJVVyZWE2aXOLht8jAH3nXXp8U9SMG7ogHVzD13uoZt76J56yCD7BzwGdzDh9D_kzRlxiPjXXislGGjxB6PTlgc |
| CODEN | JLTEDG |
| CitedBy_id | crossref_primary_10_1109_LSENS_2025_3560144 crossref_primary_10_1360_SSI_2024_0118 crossref_primary_10_1016_j_optlastec_2023_109417 crossref_primary_10_1016_j_yofte_2024_103885 crossref_primary_10_3390_s23146402 crossref_primary_10_1364_OL_566608 crossref_primary_10_1134_S0020441224700325 crossref_primary_10_1364_JOCN_502937 crossref_primary_10_1364_JOCN_480970 crossref_primary_10_1016_j_yofte_2024_104047 crossref_primary_10_1016_j_optlastec_2024_111952 crossref_primary_10_1364_AO_476614 crossref_primary_10_1109_OJCOMS_2025_3581480 crossref_primary_10_3390_s25144284 crossref_primary_10_1364_JOCN_451289 crossref_primary_10_3390_s25051407 crossref_primary_10_1364_JOCN_517529 crossref_primary_10_1109_JLT_2025_3554628 crossref_primary_10_1109_JLT_2025_3579518 crossref_primary_10_3390_electronics12173728 crossref_primary_10_1049_2024_5512014 crossref_primary_10_3390_photonics10070822 crossref_primary_10_1364_JOCN_550933 |
| Cites_doi | 10.1364/OE.22.000325 10.1109/LSP.2015.2406314 10.1109/OFC.1998.657350 10.1007/s10479-011-0841-3 10.1364/JOCN.423625 10.1109/ICTC51749.2021.9441614 10.1007/978-981-10-3229-5_47 10.1109/MCOM.2011.5706313 10.3847/1538-3881/aaf101 10.1145/1390156.1390294 10.1364/OFC.2021.M3C.7 10.23919/EUSIPCO.2019.8902833 10.1109/ECOC52684.2021.9605969 10.1016/j.jcp.2020.109913 10.1162/neco.1997.9.8.1735 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD H8D L7M |
| DOI | 10.1109/JLT.2021.3138268 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics |
| EISSN | 1558-2213 |
| EndPage | 2264 |
| ExternalDocumentID | 10_1109_JLT_2021_3138268 9663018 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: AI-NET-PROTECT grantid: C2019/3-4 – fundername: German Federal Ministry of Education and Research grantid: FKZ16KIS1279K – fundername: CELTIC-NEXT |
| GroupedDBID | -~X 0R~ 29K 4.4 5GY 6IK 85S 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK AEDJG AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 D-I DSZJF DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL OFLFD OPJBK P2P RIA RIE RNS ROL ROS TN5 TR6 ZCA AAYXX CITATION 7SP 7U5 8FD H8D L7M |
| ID | FETCH-LOGICAL-c291t-d53a56fba0551cc89162cd33e802e178411bdf1bdd04a24b1350893aa6e315e33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778946100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0733-8724 |
| IngestDate | Mon Jun 30 10:19:30 EDT 2025 Tue Nov 18 22:30:41 EST 2025 Sat Nov 29 02:11:35 EST 2025 Wed Aug 27 02:40:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-d53a56fba0551cc89162cd33e802e178411bdf1bdd04a24b1350893aa6e315e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7321-7938 0000-0002-3076-527X |
| PQID | 2647426513 |
| PQPubID | 85485 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_9663018 proquest_journals_2647426513 crossref_primary_10_1109_JLT_2021_3138268 crossref_citationtrail_10_1109_JLT_2021_3138268 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-15 |
| PublicationDateYYYYMMDD | 2022-04-15 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of lightwave technology |
| PublicationTitleAbbrev | JLT |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref16 ref8 ref9 ref4 ref3 ref5 Abdelli (ref7) Abdelli (ref6) |
| References_xml | – ident: ref1 doi: 10.1364/OE.22.000325 – ident: ref14 doi: 10.1109/LSP.2015.2406314 – ident: ref3 doi: 10.1109/OFC.1998.657350 – ident: ref16 doi: 10.1007/s10479-011-0841-3 – ident: ref4 doi: 10.1364/JOCN.423625 – ident: ref5 doi: 10.1109/ICTC51749.2021.9441614 – ident: ref8 doi: 10.1007/978-981-10-3229-5_47 – ident: ref2 doi: 10.1109/MCOM.2011.5706313 – ident: ref9 doi: 10.3847/1538-3881/aaf101 – ident: ref12 doi: 10.1145/1390156.1390294 – volume-title: Proc. Opt. Fiber Commun. Conf. Exhib. ident: ref6 article-title: A BiLSTM-CNN based multitask learning approach for fiber fault diagnosis doi: 10.1364/OFC.2021.M3C.7 – ident: ref11 doi: 10.23919/EUSIPCO.2019.8902833 – ident: ref15 doi: 10.1109/ECOC52684.2021.9605969 – start-page: 1 volume-title: Proc. Photon. Netw., 22th ITG Symp. ident: ref7 article-title: Convolutional neural networks for reflective event detection and characterization in fiber optical links given noisy OTDR signals – ident: ref10 doi: 10.1016/j.jcp.2020.109913 – ident: ref13 doi: 10.1162/neco.1997.9.8.1735 |
| SSID | ssj0014487 |
| Score | 2.5643685 |
| Snippet | Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2254 |
| SubjectTerms | Backscattering Bidirectional long short-term memory Blurring Computer architecture Convolution convolutional autoencoder Decoding denoising Fault detection Fault location Fiber optics intelligent fault detection and diagnosis Localization Logic gates Microprocessors Noise reduction Optical fibers Optical memory (data storage) OTDR (optical time domain reflectometry) Short term |
| Title | Optical Fiber Fault Detection and Localization in a Noisy OTDR Trace Based on Denoising Convolutional Autoencoder and Bidirectional Long Short-Term Memory |
| URI | https://ieeexplore.ieee.org/document/9663018 https://www.proquest.com/docview/2647426513 |
| Volume | 40 |
| WOSCitedRecordID | wos000778946100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2213 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014487 issn: 0733-8724 databaseCode: RIE dateStart: 19830101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SkEIvzaul2yZFh14KcdfWw5KOTbZLCZtNabYlN2NLMlkIdoi9gfyV_tqOZO1CaSn0YDCWZAtm5O8bzUMA74VkJqskS7QSLuFa5YnWViSWKlMJK3MegjF_zOR8rm5u9NctON3kwjjnQvCZ--hvgy_ftmblt8rGSM1RH9U2bEsph1ytjccAzYyQGi0ZwxVO-dolmerxxWyBhiDN0D5lyKbVbxAUzlT540cc0GW693_z2ocXkUWST4PYD2DLNYewFxklieu1O4RnIcDTdEfw8-o-7FqTqQ8RIdNyddeTietDJFZDysaSmYe1mJZJlviMzNtl90SuFpNvBDHNOHKGmGcJNk9cg20Ie-S8bR6j-voZrfrWl8a0-A3_zrPlgJlD66zFAde3yPiTBSICufRhvk8v4fv08-L8SxLPZUgM1VmfWMFKkddVmSLdMkYhw6TGMuZUSl3mHZlZZWu8bMpLyquMIQvUrCxzxzLhGHsFO03buNdA8P_BVY2U1cma14JqXua5VT7RnbO6UiMYr0VVmFi03J-dcVcE4yXVBQq38MItonBH8GEz4n4o2PGPvkdemJt-UY4jOF5rQxFXdFcgcZTIZkTG3vx91Ft4Tn1qhK8DKY5hp39YuRPYNY_9snt4F5T1F7fI5jg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VAqIXCm0RCwV84IJE2MSPxD7SLqsC6RZBQL1Fie2IlaqkarKV-lf6axk73pUQCIlDpCi2E0szzveN52GA1yJjOqkzFikpbMSVTCOljIgMlboWJku5D8b8kWeLhTw_V1-24O0mF8Za64PP7Dt36335ptMrt1U2RWqO-ijvwF3BOU3GbK2NzwANDZ8cnTGGa5zytVMyVtNPeYGmIE3QQmXIp-VvIORPVfnjV-zxZb77fzN7BA8DjyTvR8E_hi3b7sFu4JQkrNh-D-77EE_d78Pt2aXftyZzFyRC5tXqYiAzO_hYrJZUrSG5A7aQmEmW-IwsumV_Q86K2VeCqKYtOULUMwSbZ7bFNgQ-cty110GB3YxWQ-eKYxr8hnvn0XJEzbE173DAt5_I-aMCMYGcukDfmwP4Pv9QHJ9E4WSGSFOVDJERrBJpU1cxEi6tJXJMqg1jVsbUJs6VmdSmwcvEvKK8ThjyQMWqKrUsEZaxJ7Dddq19CgT_IFw2SFpt1vBGUMWrNDXSpbpz1tRyAtO1qEodypa70zMuSm--xKpE4ZZOuGUQ7gTebEZcjiU7_tF33wlz0y_IcQKHa20ow5ruS6SOGfIZkbBnfx_1Ch6cFKd5mX9cfH4OO9QlSriqkOIQtoerlX0B9_T1sOyvXnrF_QXU3-l_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+Fiber+Fault+Detection+and+Localization+in+a+Noisy+OTDR+Trace+Based+on+Denoising+Convolutional+Autoencoder+and+Bidirectional+Long+Short-Term+Memory&rft.jtitle=Journal+of+lightwave+technology&rft.au=Abdelli%2C+Khouloud&rft.au=Grieser%2C+Helmut&rft.au=Tropschug%2C+Carsten&rft.au=Pachnicke%2C+Stephan&rft.date=2022-04-15&rft.issn=0733-8724&rft.eissn=1558-2213&rft.volume=40&rft.issue=8&rft.spage=2254&rft.epage=2264&rft_id=info:doi/10.1109%2FJLT.2021.3138268&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JLT_2021_3138268 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8724&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8724&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8724&client=summon |