SPICE-Based Multiphysics Model to Analyze the Dynamics of Ferroelectric Negative-Capacitance-Electrostatic MEMS Hybrid Actuators

We propose a Simulation Program with Integrated Circuit Emphasis (SPICE)-based multiphysics framework to model ferroelectric negative-capacitance-electrostatic microelectromechanical systems (MEMS) hybrid actuators. Our approach couples the nonlinear dynamics of both the ferroelectric capacitor and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices Vol. 67; no. 11; pp. 5174 - 5181
Main Authors: Raman, Raghuram Tattamangalam, Ajoy, Arvind
Format: Journal Article
Language:English
Published: New York IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9383, 1557-9646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a Simulation Program with Integrated Circuit Emphasis (SPICE)-based multiphysics framework to model ferroelectric negative-capacitance-electrostatic microelectromechanical systems (MEMS) hybrid actuators. Our approach couples the nonlinear dynamics of both the ferroelectric capacitor and the MEMS actuator. Using this framework, we examine the dynamic response and the energy consumed during pull-in switching of the hybrid actuator. We predict a significant reduction in the dynamic pull-in and pull-out voltages and the energy consumed by the hybrid actuator compared with the standalone MEMS actuator. We also predict that the pull-in time of the hybrid actuator is, however, larger than that of the standalone actuator. Nevertheless, we show that one can tradeoff a small part of the reduction in actuation voltage to achieve identical pull-in times in the hybrid and standalone MEMS actuators while still consuming substantially lower energy in the former compared with the latter. Our analysis approach is compatible with standard circuit simulators and is, hence, suitable for analysis and evaluation of various heterogeneous systems consisting of hybrid MEMS actuators and other electronic devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2020.3019991