Resilient Active Target Tracking With Multiple Robots

The problem of target tracking with multiple robots consists of actively planning the motion of the robots to track the targets. A major challenge for practical deployments is to make the robots resilient to failures. In particular, robots may be attacked in adversarial scenarios, or their sensors m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 4; no. 1; pp. 129 - 136
Main Authors: Zhou, Lifeng, Tzoumas, Vasileios, Pappas, George J., Tokekar, Pratap
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The problem of target tracking with multiple robots consists of actively planning the motion of the robots to track the targets. A major challenge for practical deployments is to make the robots resilient to failures. In particular, robots may be attacked in adversarial scenarios, or their sensors may fail or get occluded. In this letter, we introduce planning algorithms for multi-target tracking that are resilient to such failures. In general, resilient target tracking is computationally hard. Contrary to the case where there are no failures, no scalable approximation algorithms are known for resilient target tracking when the targets are indistinguishable, or unknown in number, or with unknown motion model. In this letter, we provide the first such algorithm, which also has the following properties: First, it achieves maximal resiliency, since the algorithm is valid for any number of failures. Second, it is scalable, as our algorithm terminates with the same running time as state-of-the-art algorithms for (non-resilient) target tracking. Third, it provides provable approximation bounds on the tracking performance, since our algorithm guarantees a solution that is guaranteed to be close to the optimal. We quantify our algorithm's approximation performance using a novel notion of curvature for monotone set functions subject to matroid constraints. Finally, we demonstrate the efficacy of our algorithm through MATLAB and Gazebo simulations and a sensitivity analysis; we focus on scenarios that involve a known number of distinguishable targets.
AbstractList The problem of target tracking with multiple robots consists of actively planning the motion of the robots to track the targets. A major challenge for practical deployments is to make the robots resilient to failures. In particular, robots may be attacked in adversarial scenarios, or their sensors may fail or get occluded. In this letter, we introduce planning algorithms for multi-target tracking that are resilient to such failures. In general, resilient target tracking is computationally hard. Contrary to the case where there are no failures, no scalable approximation algorithms are known for resilient target tracking when the targets are indistinguishable, or unknown in number, or with unknown motion model. In this letter, we provide the first such algorithm, which also has the following properties: First, it achieves maximal resiliency, since the algorithm is valid for any number of failures. Second, it is scalable, as our algorithm terminates with the same running time as state-of-the-art algorithms for (non-resilient) target tracking. Third, it provides provable approximation bounds on the tracking performance, since our algorithm guarantees a solution that is guaranteed to be close to the optimal. We quantify our algorithm's approximation performance using a novel notion of curvature for monotone set functions subject to matroid constraints. Finally, we demonstrate the efficacy of our algorithm through MATLAB and Gazebo simulations and a sensitivity analysis; we focus on scenarios that involve a known number of distinguishable targets.
Author Zhou, Lifeng
Tokekar, Pratap
Tzoumas, Vasileios
Pappas, George J.
Author_xml – sequence: 1
  givenname: Lifeng
  orcidid: 0000-0001-7927-8504
  surname: Zhou
  fullname: Zhou, Lifeng
  email: lfzhou@vt.edu
  organization: Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
– sequence: 2
  givenname: Vasileios
  orcidid: 0000-0001-9951-5255
  surname: Tzoumas
  fullname: Tzoumas, Vasileios
  email: vtzoumas@mit.edu
  organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 3
  givenname: George J.
  orcidid: 0000-0001-9081-0637
  surname: Pappas
  fullname: Pappas, George J.
  email: pappagsg@seas.upenn.edu
  organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 4
  givenname: Pratap
  orcidid: 0000-0002-3728-3636
  surname: Tokekar
  fullname: Tokekar, Pratap
  email: tokekar@vt.edu
  organization: Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
BookMark eNp9kE1LAzEQhoNUsNbeBS8LnrfmYzebHEvRKlSEUvEYstnZmrpuapIK_ntTWkQ8eJo5zDPvzHOOBr3rAaFLgieEYHmzWE4nFBMxoUIQKvkJGlJWVTmrOB_86s_QOIQNxpiUtGKyHKJyCcF2FvqYTU20n5CttF9DzFZemzfbr7MXG1-zx10X7baDbOlqF8MFOm11F2B8rCP0fHe7mt3ni6f5w2y6yA2VJOZNgQmnwEoipKS0oY0sDWk4iKquGDe6ZQyIbIWgNZG0LWphWMuaummgZgkcoevD3q13HzsIUW3czvcpUlEqRXqpZEWawocp410IHlq19fZd-y9FsNr7UcmP2vtRRz8J4X8QY6OO1vXRa9v9B14dQAsAPzkinVFwwb4Bqd5yyw
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_JIOT_2024_3374784
crossref_primary_10_1109_TASE_2023_3295373
crossref_primary_10_1109_TCST_2021_3069175
crossref_primary_10_1007_s10846_021_01378_2
crossref_primary_10_1109_TAC_2020_3046222
crossref_primary_10_1109_TRO_2022_3161765
crossref_primary_10_3390_app12178649
crossref_primary_10_1109_TRO_2022_3233341
crossref_primary_10_3390_app15158217
crossref_primary_10_1109_TAC_2022_3226713
crossref_primary_10_1109_TRO_2021_3089033
crossref_primary_10_1109_LRA_2019_2959726
crossref_primary_10_1109_LRA_2023_3248372
crossref_primary_10_1109_TRO_2022_3232268
crossref_primary_10_1007_s43154_021_00046_5
crossref_primary_10_1109_LRA_2025_3551255
crossref_primary_10_1109_JIOT_2021_3078620
crossref_primary_10_1109_LRA_2021_3080629
crossref_primary_10_1007_s10462_025_11348_x
crossref_primary_10_1109_TMC_2021_3136868
crossref_primary_10_1109_JSYST_2021_3107779
crossref_primary_10_1109_TMC_2020_3043000
crossref_primary_10_1109_JIOT_2022_3172936
crossref_primary_10_1109_TRO_2022_3158227
crossref_primary_10_1016_j_ifacol_2023_10_206
crossref_primary_10_1109_TCST_2024_3494392
crossref_primary_10_1109_TRO_2025_3567506
crossref_primary_10_1002_aisy_202500238
crossref_primary_10_1109_ACCESS_2021_3070180
crossref_primary_10_3390_s24092868
crossref_primary_10_1016_j_asoc_2025_113463
crossref_primary_10_1109_LRA_2022_3155805
crossref_primary_10_1007_s10514_020_09963_4
crossref_primary_10_1109_LRA_2021_3067275
crossref_primary_10_3389_fnbot_2021_798428
crossref_primary_10_1109_TCNS_2022_3203350
crossref_primary_10_1016_j_engappai_2023_107099
crossref_primary_10_1007_s10514_021_10029_2
crossref_primary_10_1016_j_csi_2024_103844
crossref_primary_10_1109_ACCESS_2024_3363657
crossref_primary_10_1016_j_conengprac_2024_106094
Cites_doi 10.1007/s10514-015-9491-7
10.1177/0278364917709507
10.1109/MCS.2007.384124
10.1002/(SICI)1520-6750(199809)45:6<615::AID-NAV5>3.0.CO;2-5
10.1177/0278364912455954
10.1109/IROS.2014.6942986
10.1109/MRA.2012.2220506
10.1016/0166-218X(84)90003-9
10.1109/MRA.2006.1678135
10.1007/978-3-642-14743-2_24
10.1109/ROBOT.2002.1014784
10.1109/JPROC.2011.2158377
10.2307/j.ctvjsf522
10.1007/BFb0121195
10.1109/IROS.1998.724781
10.1177/0278364903022001002
10.1109/TRO.2006.889490
10.1109/LRA.2016.2645516
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2018.2881296
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 136
ExternalDocumentID 10_1109_LRA_2018_2881296
8534468
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1566247; 1637915
  funderid: 10.13039/100000001
– fundername: Army Research Laboratory Distributed and Collaborative Intelligent Systems and Technology Collaborative Research Alliance
  grantid: W911NF-17-2-0181
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-d40162e35189922d2d95c1d6e87b736caf33e19f882b192f4b8c3f3dbddeb32e3
IEDL.DBID RIE
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452635700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Nov 09 06:07:51 EST 2025
Sat Nov 29 06:03:02 EST 2025
Tue Nov 18 21:44:01 EST 2025
Wed Aug 27 02:53:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-d40162e35189922d2d95c1d6e87b736caf33e19f882b192f4b8c3f3dbddeb32e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7927-8504
0000-0002-3728-3636
0000-0001-9081-0637
0000-0001-9951-5255
PQID 2298376534
PQPubID 4437225
PageCount 8
ParticipantIDs ieee_primary_8534468
crossref_citationtrail_10_1109_LRA_2018_2881296
proquest_journals_2298376534
crossref_primary_10_1109_LRA_2018_2881296
PublicationCentury 2000
PublicationDate 2019-Jan.
2019-1-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-Jan.
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref10
ref2
ref1
green (ref21) 2010
ref19
schlotfeldt (ref18) 2018
fisher (ref17) 1978
myerson (ref22) 2013
ref24
ref23
frew (ref8) 2003
tzoumas (ref16) 2018
sless (ref13) 2014
iyer (ref25) 2013
ref7
ref9
ref4
ref3
ref6
thrun (ref20) 2005
atanasov (ref5) 2014
References_xml – year: 2003
  ident: ref8
  publication-title: Observer Trajectory Generation for Target-Motion Estimation Using Monocular Vision
– year: 2018
  ident: ref18
  article-title: Resilient active information gathering with mobile robots
  publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst
– ident: ref6
  doi: 10.1007/s10514-015-9491-7
– ident: ref12
  doi: 10.1177/0278364917709507
– ident: ref19
  doi: 10.1109/MCS.2007.384124
– ident: ref23
  doi: 10.1002/(SICI)1520-6750(199809)45:6<615::AID-NAV5>3.0.CO;2-5
– ident: ref4
  doi: 10.1177/0278364912455954
– start-page: 6447
  year: 2014
  ident: ref5
  article-title: Information acquisition with sensing robots
  publication-title: Proc IEEE Int Conf Robot Automat
– start-page: 855
  year: 2013
  ident: ref25
  article-title: Fast semidifferential-based submodular function optimization
  publication-title: Proc Int Conf Mach Learn
– ident: ref11
  doi: 10.1109/IROS.2014.6942986
– ident: ref1
  doi: 10.1109/MRA.2012.2220506
– ident: ref24
  doi: 10.1016/0166-218X(84)90003-9
– ident: ref2
  doi: 10.1109/MRA.2006.1678135
– start-page: 281
  year: 2010
  ident: ref21
  article-title: Toward optimal sampling in the space of paths
  publication-title: Proc Int Robot Res Conf
  doi: 10.1007/978-3-642-14743-2_24
– ident: ref14
  doi: 10.1109/ROBOT.2002.1014784
– year: 2005
  ident: ref20
  publication-title: Probabilistic Robotics
– year: 2018
  ident: ref16
  article-title: Resilient non-submodular maximization over matroid constraints
– ident: ref9
  doi: 10.1109/JPROC.2011.2158377
– year: 2013
  ident: ref22
  publication-title: Game Theory
  doi: 10.2307/j.ctvjsf522
– start-page: 73
  year: 1978
  ident: ref17
  article-title: An analysis of approximations for maximizing submodular set functions-II
  publication-title: Polyhedral Combinatorics
  doi: 10.1007/BFb0121195
– ident: ref15
  doi: 10.1109/IROS.1998.724781
– start-page: 1093
  year: 2014
  ident: ref13
  article-title: Multi-robot adversarial patrolling: Facing coordinated attacks
  publication-title: Proc Int Conf Auton Agents Multi-Agent Syst
– ident: ref7
  doi: 10.1177/0278364903022001002
– ident: ref3
  doi: 10.1109/TRO.2006.889490
– ident: ref10
  doi: 10.1109/LRA.2016.2645516
SSID ssj0001527395
Score 2.4193528
Snippet The problem of target tracking with multiple robots consists of actively planning the motion of the robots to track the targets. A major challenge for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 129
SubjectTerms Algorithms
Approximation
Approximation algorithms
Computer simulation
Failure
Mathematical analysis
Multi-robot systems
Multiple robots
Multiple target tracking
planning
Robot dynamics
Robot kinematics
Robot sensing systems
Robots
robust/adaptive control of robotic systems
scheduling and coordination
Sensitivity analysis
Sonar
Target tracking
Trajectory
Title Resilient Active Target Tracking With Multiple Robots
URI https://ieeexplore.ieee.org/document/8534468
https://www.proquest.com/docview/2298376534
Volume 4
WOSCitedRecordID wos000452635700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4A8aAHX2hEkfTgxcQC7bLd3SMxGA9ADEHl1nS320hCqKHFo7_d2W1BEo2Jtx5mmma2O-_5BuCGxUGilWBuT3sYoBBJXB5Rz03wdjHGuzyyzeMvQzYe89lMPFXgbjsLo7W2zWe6bR5tLT9O1dqkyjpoWjB64VWoMhYUs1rf-RSDJCbophLZFZ3hpG9at3jb52jFDCr_juWxq1R-6F9rVB6O_vc5x3BYOo9OvzjtE6jo5Skc7EAK1oFOdDZfmCFHp29VmTO1vd4OGiVl0uLO6zx_c0ZlH6EzSWWaZ2fw_DCY3j-65WoEV_nCy90Yw6LA14R63ADLxn4sqPLiQHMmGQlUlBCiPZGg_yzRh0t6kiuSkFiiNpMEGc-htkyX-gIcQSNJExrRyBR3SU9ggOcTiRqUKBlwrwGdjdhCVeKGm_UVi9DGD10RoqBDI-iwFHQDbrcc7wVmxh-0dSPYLV0p0wY0NycTlpcqC31fYDgdIMXl71xXsI_vFkWGpAm1fLXW17CnPvJ5tmpBdfQ5aNm_5gvWCb2g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDrypWq-bgRTBtks0mu8ciloppkVK1t5DdbLBQGmlTf7-z27QKiuAthxkSZrPznm8ArsM0yJTkoe0rFwMUIojNEuraGd6uMGQOS0zz-EsU9vtsNOJPFbhdz8IopUzzmWrqR1PLT3O50KmyFpoWjF7YBmxS3_ec5bTWV0ZFY4lxuqpFOrwVDdq6eYs1PYZ2TOPyf7M9ZpnKDw1szEpn_38fdAB7pftotZfnfQgVNT2C3W-ggjWgAzUfT_SYo9U2yswamm5vC82S1Ilx63VcvFm9spPQGuQiL-bH8Ny5H9517XI5gi097hZ2ioFR4ClCXaahZVMv5VS6aaBYKEISyCQjRLk8Qw9aoBeX-YJJkpFUoD4TBBlPoDrNp-oULE4TQTOa0ESXd4nPMcTziEAdSqQImFuH1kpssSyRw_UCi0lsIgiHxyjoWAs6LgVdh5s1x_sSNeMP2poW7JqulGkdGquTictrNY89j2NAHSDF2e9cV7DdHfaiOHroP57DDr6HL_MlDagWs4W6gC35UYzns0vz73wCYZO_tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resilient+Active+Target+Tracking+With+Multiple+Robots&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Zhou%2C+Lifeng&rft.au=Tzoumas%2C+Vasileios&rft.au=Pappas%2C+George+J.&rft.au=Tokekar%2C+Pratap&rft.date=2019-01-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=4&rft.issue=1&rft.spage=129&rft.epage=136&rft_id=info:doi/10.1109%2FLRA.2018.2881296&rft.externalDocID=8534468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon