Resilient Active Target Tracking With Multiple Robots
The problem of target tracking with multiple robots consists of actively planning the motion of the robots to track the targets. A major challenge for practical deployments is to make the robots resilient to failures. In particular, robots may be attacked in adversarial scenarios, or their sensors m...
Saved in:
| Published in: | IEEE robotics and automation letters Vol. 4; no. 1; pp. 129 - 136 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The problem of target tracking with multiple robots consists of actively planning the motion of the robots to track the targets. A major challenge for practical deployments is to make the robots resilient to failures. In particular, robots may be attacked in adversarial scenarios, or their sensors may fail or get occluded. In this letter, we introduce planning algorithms for multi-target tracking that are resilient to such failures. In general, resilient target tracking is computationally hard. Contrary to the case where there are no failures, no scalable approximation algorithms are known for resilient target tracking when the targets are indistinguishable, or unknown in number, or with unknown motion model. In this letter, we provide the first such algorithm, which also has the following properties: First, it achieves maximal resiliency, since the algorithm is valid for any number of failures. Second, it is scalable, as our algorithm terminates with the same running time as state-of-the-art algorithms for (non-resilient) target tracking. Third, it provides provable approximation bounds on the tracking performance, since our algorithm guarantees a solution that is guaranteed to be close to the optimal. We quantify our algorithm's approximation performance using a novel notion of curvature for monotone set functions subject to matroid constraints. Finally, we demonstrate the efficacy of our algorithm through MATLAB and Gazebo simulations and a sensitivity analysis; we focus on scenarios that involve a known number of distinguishable targets. |
|---|---|
| AbstractList | The problem of target tracking with multiple robots consists of actively planning the motion of the robots to track the targets. A major challenge for practical deployments is to make the robots resilient to failures. In particular, robots may be attacked in adversarial scenarios, or their sensors may fail or get occluded. In this letter, we introduce planning algorithms for multi-target tracking that are resilient to such failures. In general, resilient target tracking is computationally hard. Contrary to the case where there are no failures, no scalable approximation algorithms are known for resilient target tracking when the targets are indistinguishable, or unknown in number, or with unknown motion model. In this letter, we provide the first such algorithm, which also has the following properties: First, it achieves maximal resiliency, since the algorithm is valid for any number of failures. Second, it is scalable, as our algorithm terminates with the same running time as state-of-the-art algorithms for (non-resilient) target tracking. Third, it provides provable approximation bounds on the tracking performance, since our algorithm guarantees a solution that is guaranteed to be close to the optimal. We quantify our algorithm's approximation performance using a novel notion of curvature for monotone set functions subject to matroid constraints. Finally, we demonstrate the efficacy of our algorithm through MATLAB and Gazebo simulations and a sensitivity analysis; we focus on scenarios that involve a known number of distinguishable targets. |
| Author | Zhou, Lifeng Tokekar, Pratap Tzoumas, Vasileios Pappas, George J. |
| Author_xml | – sequence: 1 givenname: Lifeng orcidid: 0000-0001-7927-8504 surname: Zhou fullname: Zhou, Lifeng email: lfzhou@vt.edu organization: Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA – sequence: 2 givenname: Vasileios orcidid: 0000-0001-9951-5255 surname: Tzoumas fullname: Tzoumas, Vasileios email: vtzoumas@mit.edu organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA – sequence: 3 givenname: George J. orcidid: 0000-0001-9081-0637 surname: Pappas fullname: Pappas, George J. email: pappagsg@seas.upenn.edu organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA – sequence: 4 givenname: Pratap orcidid: 0000-0002-3728-3636 surname: Tokekar fullname: Tokekar, Pratap email: tokekar@vt.edu organization: Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA |
| BookMark | eNp9kE1LAzEQhoNUsNbeBS8LnrfmYzebHEvRKlSEUvEYstnZmrpuapIK_ntTWkQ8eJo5zDPvzHOOBr3rAaFLgieEYHmzWE4nFBMxoUIQKvkJGlJWVTmrOB_86s_QOIQNxpiUtGKyHKJyCcF2FvqYTU20n5CttF9DzFZemzfbr7MXG1-zx10X7baDbOlqF8MFOm11F2B8rCP0fHe7mt3ni6f5w2y6yA2VJOZNgQmnwEoipKS0oY0sDWk4iKquGDe6ZQyIbIWgNZG0LWphWMuaummgZgkcoevD3q13HzsIUW3czvcpUlEqRXqpZEWawocp410IHlq19fZd-y9FsNr7UcmP2vtRRz8J4X8QY6OO1vXRa9v9B14dQAsAPzkinVFwwb4Bqd5yyw |
| CODEN | IRALC6 |
| CitedBy_id | crossref_primary_10_1109_JIOT_2024_3374784 crossref_primary_10_1109_TASE_2023_3295373 crossref_primary_10_1109_TCST_2021_3069175 crossref_primary_10_1007_s10846_021_01378_2 crossref_primary_10_1109_TAC_2020_3046222 crossref_primary_10_1109_TRO_2022_3161765 crossref_primary_10_3390_app12178649 crossref_primary_10_1109_TRO_2022_3233341 crossref_primary_10_3390_app15158217 crossref_primary_10_1109_TAC_2022_3226713 crossref_primary_10_1109_TRO_2021_3089033 crossref_primary_10_1109_LRA_2019_2959726 crossref_primary_10_1109_LRA_2023_3248372 crossref_primary_10_1109_TRO_2022_3232268 crossref_primary_10_1007_s43154_021_00046_5 crossref_primary_10_1109_LRA_2025_3551255 crossref_primary_10_1109_JIOT_2021_3078620 crossref_primary_10_1109_LRA_2021_3080629 crossref_primary_10_1007_s10462_025_11348_x crossref_primary_10_1109_TMC_2021_3136868 crossref_primary_10_1109_JSYST_2021_3107779 crossref_primary_10_1109_TMC_2020_3043000 crossref_primary_10_1109_JIOT_2022_3172936 crossref_primary_10_1109_TRO_2022_3158227 crossref_primary_10_1016_j_ifacol_2023_10_206 crossref_primary_10_1109_TCST_2024_3494392 crossref_primary_10_1109_TRO_2025_3567506 crossref_primary_10_1002_aisy_202500238 crossref_primary_10_1109_ACCESS_2021_3070180 crossref_primary_10_3390_s24092868 crossref_primary_10_1016_j_asoc_2025_113463 crossref_primary_10_1109_LRA_2022_3155805 crossref_primary_10_1007_s10514_020_09963_4 crossref_primary_10_1109_LRA_2021_3067275 crossref_primary_10_3389_fnbot_2021_798428 crossref_primary_10_1109_TCNS_2022_3203350 crossref_primary_10_1016_j_engappai_2023_107099 crossref_primary_10_1007_s10514_021_10029_2 crossref_primary_10_1016_j_csi_2024_103844 crossref_primary_10_1109_ACCESS_2024_3363657 crossref_primary_10_1016_j_conengprac_2024_106094 |
| Cites_doi | 10.1007/s10514-015-9491-7 10.1177/0278364917709507 10.1109/MCS.2007.384124 10.1002/(SICI)1520-6750(199809)45:6<615::AID-NAV5>3.0.CO;2-5 10.1177/0278364912455954 10.1109/IROS.2014.6942986 10.1109/MRA.2012.2220506 10.1016/0166-218X(84)90003-9 10.1109/MRA.2006.1678135 10.1007/978-3-642-14743-2_24 10.1109/ROBOT.2002.1014784 10.1109/JPROC.2011.2158377 10.2307/j.ctvjsf522 10.1007/BFb0121195 10.1109/IROS.1998.724781 10.1177/0278364903022001002 10.1109/TRO.2006.889490 10.1109/LRA.2016.2645516 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LRA.2018.2881296 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 136 |
| ExternalDocumentID | 10_1109_LRA_2018_2881296 8534468 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: 1566247; 1637915 funderid: 10.13039/100000001 – fundername: Army Research Laboratory Distributed and Collaborative Intelligent Systems and Technology Collaborative Research Alliance grantid: W911NF-17-2-0181 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-d40162e35189922d2d95c1d6e87b736caf33e19f882b192f4b8c3f3dbddeb32e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452635700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3766 |
| IngestDate | Sun Nov 09 06:07:51 EST 2025 Sat Nov 29 06:03:02 EST 2025 Tue Nov 18 21:44:01 EST 2025 Wed Aug 27 02:53:56 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-d40162e35189922d2d95c1d6e87b736caf33e19f882b192f4b8c3f3dbddeb32e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7927-8504 0000-0002-3728-3636 0000-0001-9081-0637 0000-0001-9951-5255 |
| PQID | 2298376534 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_8534468 crossref_citationtrail_10_1109_LRA_2018_2881296 proquest_journals_2298376534 crossref_primary_10_1109_LRA_2018_2881296 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Jan. 2019-1-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-Jan. |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref11 ref10 ref2 ref1 green (ref21) 2010 ref19 schlotfeldt (ref18) 2018 fisher (ref17) 1978 myerson (ref22) 2013 ref24 ref23 frew (ref8) 2003 tzoumas (ref16) 2018 sless (ref13) 2014 iyer (ref25) 2013 ref7 ref9 ref4 ref3 ref6 thrun (ref20) 2005 atanasov (ref5) 2014 |
| References_xml | – year: 2003 ident: ref8 publication-title: Observer Trajectory Generation for Target-Motion Estimation Using Monocular Vision – year: 2018 ident: ref18 article-title: Resilient active information gathering with mobile robots publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst – ident: ref6 doi: 10.1007/s10514-015-9491-7 – ident: ref12 doi: 10.1177/0278364917709507 – ident: ref19 doi: 10.1109/MCS.2007.384124 – ident: ref23 doi: 10.1002/(SICI)1520-6750(199809)45:6<615::AID-NAV5>3.0.CO;2-5 – ident: ref4 doi: 10.1177/0278364912455954 – start-page: 6447 year: 2014 ident: ref5 article-title: Information acquisition with sensing robots publication-title: Proc IEEE Int Conf Robot Automat – start-page: 855 year: 2013 ident: ref25 article-title: Fast semidifferential-based submodular function optimization publication-title: Proc Int Conf Mach Learn – ident: ref11 doi: 10.1109/IROS.2014.6942986 – ident: ref1 doi: 10.1109/MRA.2012.2220506 – ident: ref24 doi: 10.1016/0166-218X(84)90003-9 – ident: ref2 doi: 10.1109/MRA.2006.1678135 – start-page: 281 year: 2010 ident: ref21 article-title: Toward optimal sampling in the space of paths publication-title: Proc Int Robot Res Conf doi: 10.1007/978-3-642-14743-2_24 – ident: ref14 doi: 10.1109/ROBOT.2002.1014784 – year: 2005 ident: ref20 publication-title: Probabilistic Robotics – year: 2018 ident: ref16 article-title: Resilient non-submodular maximization over matroid constraints – ident: ref9 doi: 10.1109/JPROC.2011.2158377 – year: 2013 ident: ref22 publication-title: Game Theory doi: 10.2307/j.ctvjsf522 – start-page: 73 year: 1978 ident: ref17 article-title: An analysis of approximations for maximizing submodular set functions-II publication-title: Polyhedral Combinatorics doi: 10.1007/BFb0121195 – ident: ref15 doi: 10.1109/IROS.1998.724781 – start-page: 1093 year: 2014 ident: ref13 article-title: Multi-robot adversarial patrolling: Facing coordinated attacks publication-title: Proc Int Conf Auton Agents Multi-Agent Syst – ident: ref7 doi: 10.1177/0278364903022001002 – ident: ref3 doi: 10.1109/TRO.2006.889490 – ident: ref10 doi: 10.1109/LRA.2016.2645516 |
| SSID | ssj0001527395 |
| Score | 2.4193528 |
| Snippet | The problem of target tracking with multiple robots consists of actively planning the motion of the robots to track the targets. A major challenge for... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 129 |
| SubjectTerms | Algorithms Approximation Approximation algorithms Computer simulation Failure Mathematical analysis Multi-robot systems Multiple robots Multiple target tracking planning Robot dynamics Robot kinematics Robot sensing systems Robots robust/adaptive control of robotic systems scheduling and coordination Sensitivity analysis Sonar Target tracking Trajectory |
| Title | Resilient Active Target Tracking With Multiple Robots |
| URI | https://ieeexplore.ieee.org/document/8534468 https://www.proquest.com/docview/2298376534 |
| Volume | 4 |
| WOSCitedRecordID | wos000452635700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4A8aAHX2hEkfTgxcQC7bLd3SMxGA9ADEHl1nS320hCqKHFo7_d2W1BEo2Jtx5mmma2O-_5BuCGxUGilWBuT3sYoBBJXB5Rz03wdjHGuzyyzeMvQzYe89lMPFXgbjsLo7W2zWe6bR5tLT9O1dqkyjpoWjB64VWoMhYUs1rf-RSDJCbophLZFZ3hpG9at3jb52jFDCr_juWxq1R-6F9rVB6O_vc5x3BYOo9OvzjtE6jo5Skc7EAK1oFOdDZfmCFHp29VmTO1vd4OGiVl0uLO6zx_c0ZlH6EzSWWaZ2fw_DCY3j-65WoEV_nCy90Yw6LA14R63ADLxn4sqPLiQHMmGQlUlBCiPZGg_yzRh0t6kiuSkFiiNpMEGc-htkyX-gIcQSNJExrRyBR3SU9ggOcTiRqUKBlwrwGdjdhCVeKGm_UVi9DGD10RoqBDI-iwFHQDbrcc7wVmxh-0dSPYLV0p0wY0NycTlpcqC31fYDgdIMXl71xXsI_vFkWGpAm1fLXW17CnPvJ5tmpBdfQ5aNm_5gvWCb2g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDrypWq-bgRTBtks0mu8ciloppkVK1t5DdbLBQGmlTf7-z27QKiuAthxkSZrPznm8ArsM0yJTkoe0rFwMUIojNEuraGd6uMGQOS0zz-EsU9vtsNOJPFbhdz8IopUzzmWrqR1PLT3O50KmyFpoWjF7YBmxS3_ec5bTWV0ZFY4lxuqpFOrwVDdq6eYs1PYZ2TOPyf7M9ZpnKDw1szEpn_38fdAB7pftotZfnfQgVNT2C3W-ggjWgAzUfT_SYo9U2yswamm5vC82S1Ilx63VcvFm9spPQGuQiL-bH8Ny5H9517XI5gi097hZ2ioFR4ClCXaahZVMv5VS6aaBYKEISyCQjRLk8Qw9aoBeX-YJJkpFUoD4TBBlPoDrNp-oULE4TQTOa0ESXd4nPMcTziEAdSqQImFuH1kpssSyRw_UCi0lsIgiHxyjoWAs6LgVdh5s1x_sSNeMP2poW7JqulGkdGquTictrNY89j2NAHSDF2e9cV7DdHfaiOHroP57DDr6HL_MlDagWs4W6gC35UYzns0vz73wCYZO_tg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resilient+Active+Target+Tracking+With+Multiple+Robots&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Zhou%2C+Lifeng&rft.au=Tzoumas%2C+Vasileios&rft.au=Pappas%2C+George+J.&rft.au=Tokekar%2C+Pratap&rft.date=2019-01-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=4&rft.issue=1&rft.spage=129&rft.epage=136&rft_id=info:doi/10.1109%2FLRA.2018.2881296&rft.externalDocID=8534468 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |