Multi-Stage Real-Time Operation of a Multi-Energy Microgrid With Electrical and Thermal Energy Storage Assets: A Data-Driven MPC-ADP Approach
This paper studies the multi-stage real-time stochastic operation of grid-tied multi-energy microgrids (MEMGs) via the hybrid model predictive control (MPC) and approximate dynamic programming (ADP) approach. In the MEMG, practical power and thermal network constraints, heterogeneous energy storage...
Saved in:
| Published in: | IEEE transactions on smart grid Vol. 13; no. 1; pp. 213 - 226 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1949-3053, 1949-3061 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper studies the multi-stage real-time stochastic operation of grid-tied multi-energy microgrids (MEMGs) via the hybrid model predictive control (MPC) and approximate dynamic programming (ADP) approach. In the MEMG, practical power and thermal network constraints, heterogeneous energy storage devices, and distributed generations are involved. Given the relatively large thermal inertia and slow thermal energy fluctuation, only uncertainties of renewable energy sources and active/reactive power loads are considered. Then, historical data are adopted as training scenarios for the MPC-ADP method to acquire empirical knowledge for dealing with all the diverse uncertainties. Further, piecewise linear functions are used to approximate value functions with respect to the operation status of energy storage assets, which enables sequentially solving the Bellman's equation forward through time to minimize MEMG operation cost. Finally, numerical case studies are conducted to illustrate the effectiveness and superiority of the proposed MPC-ADP approach. Simulation results indicate that with sufficient information embedded, the MPC-ADP approach could obtain good-enough real-time operation solutions with the successively updated forecast. Further, it outperforms alternative real-time operation benchmarks in terms of optimality and convergence for various application scenarios. |
|---|---|
| AbstractList | This paper studies the multi-stage real-time stochastic operation of grid-tied multi-energy microgrids (MEMGs) via the hybrid model predictive control (MPC) and approximate dynamic programming (ADP) approach. In the MEMG, practical power and thermal network constraints, heterogeneous energy storage devices, and distributed generations are involved. Given the relatively large thermal inertia and slow thermal energy fluctuation, only uncertainties of renewable energy sources and active/reactive power loads are considered. Then, historical data are adopted as training scenarios for the MPC-ADP method to acquire empirical knowledge for dealing with all the diverse uncertainties. Further, piecewise linear functions are used to approximate value functions with respect to the operation status of energy storage assets, which enables sequentially solving the Bellman's equation forward through time to minimize MEMG operation cost. Finally, numerical case studies are conducted to illustrate the effectiveness and superiority of the proposed MPC-ADP approach. Simulation results indicate that with sufficient information embedded, the MPC-ADP approach could obtain good-enough real-time operation solutions with the successively updated forecast. Further, it outperforms alternative real-time operation benchmarks in terms of optimality and convergence for various application scenarios. |
| Author | Xu, Yan Tang, Zao Li, Zhengmao Wu, Lei Moazeni, Somayeh |
| Author_xml | – sequence: 1 givenname: Zhengmao surname: Li fullname: Li, Zhengmao email: zli161@stevens.edu organization: ECE Department, Stevens Institute of Technology, Hoboken, NJ, USA – sequence: 2 givenname: Lei orcidid: 0000-0002-0722-5769 surname: Wu fullname: Wu, Lei email: lei.wu@stevens.edu organization: ECE Department, Stevens Institute of Technology, Hoboken, NJ, USA – sequence: 3 givenname: Yan orcidid: 0000-0002-0503-183X surname: Xu fullname: Xu, Yan organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 4 givenname: Somayeh orcidid: 0000-0003-3631-563X surname: Moazeni fullname: Moazeni, Somayeh organization: School of Business, Stevens Institute of Technology, Hoboken, NJ, USA – sequence: 5 givenname: Zao surname: Tang fullname: Tang, Zao email: ztang17@stevens.edu organization: ECE Department, Stevens Institute of Technology, Hoboken, NJ, USA |
| BookMark | eNp9UE1PwkAQ3RhNRORu4mUTz8X9gJb11gCiCQQiNR6bbXcKS0qLu4sJP8L_7GIJBw_OZSaT9-bNezfosqorQOiOki6lRDwmy0mXEUa7nFIhInaBWlT0RMBJSC_Pc59fo461G-KLcx4y0ULfs33pdLB0cgX4DWQZJHoLeL4DI52uK1wXWOIGNK7ArA54pnNTr4xW-EO7NR6XkDujc1liWSmcrMFs_XwCL11tjqdja8HZJxzjkXQyGBn9BRWeLYZBPFrgeLcztczXt-iqkKWFzqm30fvzOBm-BNP55HUYT4OcCeoCxQnr9QdcUdVTSojMe8-ykBasiHLuzWZKML8e5BSYKmRBIpqFEfPbiBcs5G300Nz1sp97sC7d1HtTecmUhZTziAk28CjSoLxfaw0U6c7orTSHlJL0mHvqc0-Puaen3D0l_EPJtfsN0hmpy_-I9w1RA8BZR_RDEfmHfgBRf5CK |
| CODEN | ITSGBQ |
| CitedBy_id | crossref_primary_10_1016_j_rser_2025_115931 crossref_primary_10_1049_gtd2_70145 crossref_primary_10_1016_j_apenergy_2024_124040 crossref_primary_10_1016_j_ijepes_2021_107907 crossref_primary_10_3390_pr13041047 crossref_primary_10_1002_ese3_1652 crossref_primary_10_1016_j_enbuild_2024_114289 crossref_primary_10_1016_j_est_2024_112554 crossref_primary_10_1109_TPEL_2023_3280164 crossref_primary_10_1109_ACCESS_2024_3435051 crossref_primary_10_3390_pr12122725 crossref_primary_10_1016_j_neucom_2024_127573 crossref_primary_10_3390_en17194877 crossref_primary_10_3390_en18020241 crossref_primary_10_1007_s10898_023_01328_2 crossref_primary_10_3389_fenrg_2023_1273760 crossref_primary_10_1016_j_ijepes_2022_108600 crossref_primary_10_1109_JSYST_2022_3154389 crossref_primary_10_1016_j_apenergy_2024_124951 crossref_primary_10_1016_j_ijepes_2023_109194 crossref_primary_10_1007_s11071_024_09437_7 crossref_primary_10_1016_j_apenergy_2022_120081 crossref_primary_10_1016_j_apenergy_2023_121740 crossref_primary_10_1016_j_energy_2025_138079 crossref_primary_10_3390_en16124695 crossref_primary_10_1016_j_ijepes_2025_110653 crossref_primary_10_3389_fenrg_2024_1512832 crossref_primary_10_1016_j_scs_2025_106245 crossref_primary_10_3390_en17215425 crossref_primary_10_3390_en17215307 crossref_primary_10_1109_TPWRS_2024_3369664 crossref_primary_10_3390_en17235937 crossref_primary_10_1109_TSG_2023_3265398 crossref_primary_10_1016_j_apenergy_2023_121906 crossref_primary_10_1016_j_rser_2024_115312 crossref_primary_10_1109_TSG_2025_3525495 crossref_primary_10_3390_electronics12244909 crossref_primary_10_3389_fenrg_2021_803615 crossref_primary_10_1109_TSG_2024_3423321 crossref_primary_10_61435_ijred_2024_60218 crossref_primary_10_3389_fenrg_2024_1431098 crossref_primary_10_1016_j_ijepes_2023_109104 crossref_primary_10_1016_j_ijepes_2025_110746 crossref_primary_10_1109_TR_2024_3436087 crossref_primary_10_1016_j_ijepes_2022_108451 crossref_primary_10_1016_j_neucom_2025_130157 crossref_primary_10_3390_su16208955 crossref_primary_10_1016_j_epsr_2025_111946 crossref_primary_10_1016_j_rser_2023_113343 crossref_primary_10_3389_fenrg_2022_976294 crossref_primary_10_1016_j_jfranklin_2023_05_009 crossref_primary_10_1016_j_epsr_2023_109947 crossref_primary_10_1016_j_est_2025_116396 crossref_primary_10_1016_j_est_2025_116035 crossref_primary_10_1049_rpg2_70079 crossref_primary_10_1109_TSG_2024_3482980 crossref_primary_10_1016_j_energy_2022_124513 crossref_primary_10_1109_TSG_2023_3308686 crossref_primary_10_1016_j_apenergy_2023_121921 crossref_primary_10_1016_j_energy_2022_123942 crossref_primary_10_1016_j_epsr_2023_109399 crossref_primary_10_3390_app14177654 crossref_primary_10_1080_00207543_2023_2220047 crossref_primary_10_1049_stg2_12063 crossref_primary_10_1016_j_ijepes_2023_109327 crossref_primary_10_1016_j_ijepes_2022_108359 crossref_primary_10_1109_TSG_2022_3197435 crossref_primary_10_1109_TSG_2025_3547985 crossref_primary_10_3389_fenrg_2024_1361593 crossref_primary_10_32604_ee_2023_029740 crossref_primary_10_1016_j_apenergy_2024_124485 crossref_primary_10_1016_j_apenergy_2023_120682 crossref_primary_10_1109_TPWRS_2023_3296080 crossref_primary_10_1016_j_ijepes_2023_109286 crossref_primary_10_1109_TPWRS_2023_3240394 crossref_primary_10_3389_fenrg_2025_1486731 crossref_primary_10_1016_j_apenergy_2022_120282 crossref_primary_10_3390_electronics13183685 crossref_primary_10_1016_j_neucom_2023_126276 crossref_primary_10_1109_TPWRS_2023_3288859 crossref_primary_10_1109_ACCESS_2023_3335191 crossref_primary_10_1016_j_knosys_2025_113844 crossref_primary_10_1109_TIA_2024_3462698 crossref_primary_10_1016_j_apenergy_2023_121547 crossref_primary_10_1016_j_ijepes_2022_108812 crossref_primary_10_1186_s42162_024_00410_7 crossref_primary_10_3390_en16114375 crossref_primary_10_1007_s11431_024_2717_3 crossref_primary_10_1016_j_segy_2025_100202 crossref_primary_10_1016_j_apenergy_2022_120577 crossref_primary_10_1016_j_segan_2025_101814 crossref_primary_10_1109_TNSE_2024_3420771 crossref_primary_10_1109_TSG_2023_3337629 crossref_primary_10_1109_TASE_2023_3342054 crossref_primary_10_1016_j_est_2024_112774 crossref_primary_10_1016_j_est_2023_107502 crossref_primary_10_1016_j_seta_2022_102890 crossref_primary_10_3390_en18071696 crossref_primary_10_1016_j_est_2024_113633 crossref_primary_10_1016_j_apenergy_2023_121323 crossref_primary_10_3389_fenrg_2022_963062 crossref_primary_10_1016_j_ins_2024_120431 crossref_primary_10_1177_14727978241304296 |
| Cites_doi | 10.1109/TSTE.2018.2884997 10.1109/TII.2020.2971227 10.1049/iet-rpg.2019.0651 10.1109/TSTE.2014.2362291 10.1109/TAC.2013.2272973 10.1109/TII.2019.2957026 10.1016/j.ijhydene.2019.01.201 10.1049/iet-gtd.2020.0469 10.1016/j.energy.2019.05.057 10.1049/iet-gtd.2015.1344 10.1016/j.apenergy.2019.02.085 10.1109/TSG.2018.2798039 10.1016/j.apenergy.2017.08.197 10.1109/TSTE.2019.2900082 10.1109/TSTE.2020.2989793 10.1109/TSG.2021.3080312 10.1287/opre.2015.1425 10.1016/j.egypro.2019.02.040 10.1109/TSTE.2020.3031054 10.1049/iet-gtd.2018.6992 10.1109/TII.2019.2901120 10.1049/enc2.12002 10.1109/TSG.2018.2810247 10.1109/TSTE.2020.2981486 10.1109/TPWRS.2015.2424974 10.1109/TSTE.2017.2764065 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1109/TSG.2021.3119972 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1949-3061 |
| EndPage | 226 |
| ExternalDocumentID | 10_1109_TSG_2021_3119972 9569761 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: U.S. National Science Foundation grantid: CNS-1915756 funderid: 10.13039/100000001 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c291t-d3024583d1d4dd99b202bb61f2f7c3949bd9299b8c1e2dfaf071b672d9273f263 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 115 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000733951900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1949-3053 |
| IngestDate | Mon Jun 30 09:59:05 EDT 2025 Sat Nov 29 03:45:59 EST 2025 Tue Nov 18 22:18:35 EST 2025 Wed Aug 27 05:06:42 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-d3024583d1d4dd99b202bb61f2f7c3949bd9299b8c1e2dfaf071b672d9273f263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0503-183X 0000-0002-0722-5769 0000-0003-3631-563X |
| PQID | 2613372928 |
| PQPubID | 2040408 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TSG_2021_3119972 crossref_citationtrail_10_1109_TSG_2021_3119972 proquest_journals_2613372928 ieee_primary_9569761 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan. 2022-1-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on smart grid |
| PublicationTitleAbbrev | TSG |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Lam (ref28) 2016; 29 ref24 (ref29) 2021 ref23 ref26 ref25 ref22 ref21 ref27 Asamov (ref20) 2016 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Salas (ref30) 2014 |
| References_xml | – ident: ref10 doi: 10.1109/TSTE.2018.2884997 – ident: ref27 doi: 10.1109/TII.2020.2971227 – ident: ref5 doi: 10.1049/iet-rpg.2019.0651 – volume: 29 start-page: 883 year: 2016 ident: ref28 article-title: Bayesian optimization with a finite budget: An approximate dynamic programming approach publication-title: Proc. Adv. Neural Inf. Process. Syst. – ident: ref25 doi: 10.1109/TSTE.2014.2362291 – ident: ref24 doi: 10.1109/TAC.2013.2272973 – ident: ref16 doi: 10.1109/TII.2019.2957026 – ident: ref4 doi: 10.1016/j.ijhydene.2019.01.201 – ident: ref21 doi: 10.1049/iet-gtd.2020.0469 – ident: ref1 doi: 10.1016/j.energy.2019.05.057 – ident: ref8 doi: 10.1049/iet-gtd.2015.1344 – volume-title: Jensens Inequality year: 2021 ident: ref29 – ident: ref12 doi: 10.1016/j.apenergy.2019.02.085 – ident: ref22 doi: 10.1109/TSG.2018.2798039 – ident: ref3 doi: 10.1016/j.apenergy.2017.08.197 – year: 2014 ident: ref30 article-title: Approximate dynamic programming algorithms for the control of grid-level storage in the presence of renewable generation – ident: ref7 doi: 10.1109/TSTE.2019.2900082 – ident: ref17 doi: 10.1109/TSTE.2020.2989793 – ident: ref15 doi: 10.1109/TSG.2021.3080312 – ident: ref23 doi: 10.1287/opre.2015.1425 – ident: ref2 doi: 10.1016/j.egypro.2019.02.040 – ident: ref18 doi: 10.1109/TSTE.2020.3031054 – ident: ref14 doi: 10.1049/iet-gtd.2018.6992 – year: 2016 ident: ref20 article-title: SDDP vs. ADP: The effect of dimensionality in multistage stochastic optimization for grid-level energy storage publication-title: arXiv:1605.01521 – ident: ref13 doi: 10.1109/TII.2019.2901120 – ident: ref11 doi: 10.1049/enc2.12002 – ident: ref9 doi: 10.1109/TSG.2018.2810247 – ident: ref26 doi: 10.1109/TSTE.2020.2981486 – ident: ref6 doi: 10.1109/TPWRS.2015.2424974 – ident: ref19 doi: 10.1109/TSTE.2017.2764065 |
| SSID | ssj0000333629 |
| Score | 2.6200504 |
| Snippet | This paper studies the multi-stage real-time stochastic operation of grid-tied multi-energy microgrids (MEMGs) via the hybrid model predictive control (MPC)... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 213 |
| SubjectTerms | Active-reactive power Costs Distributed generation Dynamic programming Electrical loads Energy storage heterogeneous energy storage Hybrid model predictive control-approximate dynamic programming Linear functions Microgrids multi-energy microgrid Predictive control Real time operation Real-time systems Renewable energy sources stochastic operation Stochastic processes Thermal energy Uncertainty |
| Title | Multi-Stage Real-Time Operation of a Multi-Energy Microgrid With Electrical and Thermal Energy Storage Assets: A Data-Driven MPC-ADP Approach |
| URI | https://ieeexplore.ieee.org/document/9569761 https://www.proquest.com/docview/2613372928 |
| Volume | 13 |
| WOSCitedRecordID | wos000733951900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1949-3061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333629 issn: 1949-3053 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9swDBWyoofusPVjxbK1BQ-9DJgWW3KsaLcgSdtLu6BJ0d4MWZLTAEESJM7-xf7zSNkJNnQosJthSIbhJ5OPeiLJ2GXbIslG0oYI5JYnNhE8d7rNPbH_OC2MiExoNqHu7jpPT3rYYF93uTDe-3D4zH-jy6Dlu4Xd0FZZC7k8ek-Mdd4opapcrd1-SiQl2mIdROSE5Py23KqSkW6NR9cYC4oYQ1Q6WSH-8kKhrcoLWxwczNX7_3u1Q_auJpLQrZA_Yg0_P2Zv_ygveMJ-hexajnxy4uEeGSGnhA_4sfQV7LAowEA1aBByAOGWzudNVlMHj9PyGQahSQ7hCGbuANcU2vEZ1INHGK_To0k4LtffoQt9UxreX5EFhdthj3f7Q-jWVcs_sIerwbh3w-v2C9wKHZfcSZJlO9LFLnFO6xw_YJ6ncSEKZSV-ZAQVnVnesbEXrjAFspU8VQLvKlmIVJ6yvfli7j8yQJ6n0Qt6pUn2i9omNi62SA2Ed0maqyZrbeHIbF2bnFpkzLIQo0Q6QwAzAjCrAWyyL7sZy6ouxytjTwiw3bgaqyY72yKe1T_uOsOAUpKSKTqf_j3rMzsQlAERdmHO2F652vhztm9_ltP16iKsyd_O1txD |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5NAwl44NdAFAbcAy9ImMZ2ftS8VWvHEGupWBF7ixzbGZWmdmoz_gv-Z-6ctAKBkHiLIjuK8jl33_nz3QG8yhyRbCJthEDlROpSJSpvMhGY_cu8tiqxsdlEMZ0Ozs_NbA_e7HJhQgjx8Fl4y5dRy_crd81bZX3i8uQ9Kda5kaWpkm221m5HJdGarLGJMnLKgn6mt7pkYvrzs_cUDSpJQSqfrVC_-aHYWOUPaxxdzPG9_3u5-3C3o5I4bLF_AHth-RDu_FJg8AB-xPxaQYzyIuBn4oSCUz7w01VogcdVjRbbQeOYBYgTPqF3sV54_LpovuE4tslhJNEuPdKqIkt-id3gM4rY-dEsHTebdzjEkW2sGK3ZhuJkdiSGoxkOu7rlj-DL8Xh-dCK6BgzCKSMb4TULswPtpU-9N6aiD1hVuaxVXThNH5lgJXdWDZwMyte2Jr5S5YWiu4WuVa4fw_5ytQxPAInpGfKDoTAs_CWZldZLR-RABZ_mVdGD_haO0nXVyblJxmUZo5TElARgyQCWHYA9eL2bcdVW5vjH2AMGbDeuw6oHh1vEy-7X3ZQUUmrWMtXg6d9nvYRbJ_PJaXn6YfrxGdxWnA8R92QOYb9ZX4fncNN9bxab9Yu4Pn8CbBbfig |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Stage+Real-Time+Operation+of+a+Multi-Energy+Microgrid+With+Electrical+and+Thermal+Energy+Storage+Assets%3A+A+Data-Driven+MPC-ADP+Approach&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Li%2C+Zhengmao&rft.au=Wu%2C+Lei&rft.au=Xu%2C+Yan&rft.au=Moazeni%2C+Somayeh&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=13&rft.issue=1&rft.spage=213&rft_id=info:doi/10.1109%2FTSG.2021.3119972&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |