Compressibility of Positive Semidefinite Factorizations and Quantum Models
We investigate compressibility of the dimension of positive semidefinite matrices, while approximately preserving their pairwise inner products. This can either be regarded as compression of positive semidefinite factorizations of nonnegative matrices or (if the matrices are subject to additional no...
Uloženo v:
| Vydáno v: | IEEE transactions on information theory Ročník 62; číslo 5; s. 2867 - 2880 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We investigate compressibility of the dimension of positive semidefinite matrices, while approximately preserving their pairwise inner products. This can either be regarded as compression of positive semidefinite factorizations of nonnegative matrices or (if the matrices are subject to additional normalization constraints) as compression of quantum models. We derive both lower and upper bounds on compressibility. Applications are broad and range from the analysis of experimental data to bounding the one-way quantum communication complexity of Boolean functions. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2016.2538278 |