Enhanced Stacked Denoising Autoencoder-Based Feature Learning for Recognition of Wafer Map Defects
In semiconductor manufacturing systems, defects on wafer maps tend to cluster and then these spatial patterns provide important process information for helping operators in finding out root-causes of abnormal processes. Promptly recognizing wafer map defects is an effective way to increase manufactu...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on semiconductor manufacturing Jg. 32; H. 4; S. 613 - 624 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0894-6507, 1558-2345 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In semiconductor manufacturing systems, defects on wafer maps tend to cluster and then these spatial patterns provide important process information for helping operators in finding out root-causes of abnormal processes. Promptly recognizing wafer map defects is an effective way to increase manufacturing process stability and then to improve yields. Deep learning has been widely applied and obtained many successes in image and visual analysis. This paper proposes an effective deep learning method, enhanced stacked denoising autoencoder (ESDAE) with manifold regularization for wafer map pattern recognition (WMPR) in manufacturing processes. This study will concentrate on developing a deep learning model to learn effective discriminative features from wafer maps through a deep network architecture for WMPR improvement. An indication based on ESDAE is developed for detecting map defects online. An ESDAE-based classifier is finally developed to implement recognition of wafer map defects. The most motivation for developing deep learning and manifold regularization techniques is to achieve higher accuracy and applicability than that of some regular recognizers. The effectiveness of the proposed method has been demonstrated by experimental results from a real-world wafer map dataset (WM-811K). |
|---|---|
| AbstractList | In semiconductor manufacturing systems, defects on wafer maps tend to cluster and then these spatial patterns provide important process information for helping operators in finding out root-causes of abnormal processes. Promptly recognizing wafer map defects is an effective way to increase manufacturing process stability and then to improve yields. Deep learning has been widely applied and obtained many successes in image and visual analysis. This paper proposes an effective deep learning method, enhanced stacked denoising autoencoder (ESDAE) with manifold regularization for wafer map pattern recognition (WMPR) in manufacturing processes. This study will concentrate on developing a deep learning model to learn effective discriminative features from wafer maps through a deep network architecture for WMPR improvement. An indication based on ESDAE is developed for detecting map defects online. An ESDAE-based classifier is finally developed to implement recognition of wafer map defects. The most motivation for developing deep learning and manifold regularization techniques is to achieve higher accuracy and applicability than that of some regular recognizers. The effectiveness of the proposed method has been demonstrated by experimental results from a real-world wafer map dataset (WM-811K). |
| Author | Yu, Jianbo |
| Author_xml | – sequence: 1 givenname: Jianbo orcidid: 0000-0003-3204-2486 surname: Yu fullname: Yu, Jianbo email: jianboyu.bob@gmail.com organization: School of Mechanical Engineering, Tongji University, Shanghai, China |
| BookMark | eNp9kDtPAkEUhSdGEwHtTWw2sV6cJ7NbIoKaQEwEY7kZ7t7BRZzBmaHw37sEYmFhdYp7Hrlfl5w675CQK0b7jNHydjGf9TllZZ-XkgohT0iHKVXkXEh1Sjq0KGU-UFSfk26Ma0qZlKXukOXYvRsHWGfzZOCj1Xt0vomNW2XDXfLowNcY8jsT29sETdoFzKZogttbrA_ZC4JfuSY13mXeZm_GYshmZts2WYQUL8iZNZuIl0ftkdfJeDF6zKfPD0-j4TQHXrKUA6CphUBeLJcKJNeUg0JloBxoW7O6VLqGWlIodE254ANAbg2qpbRagqaiR24Ovdvgv3YYU7X2u-DayYoL1rLRrJCtix5cEHyMAW21Dc2nCd8Vo9WeZNWSrPYkqyPJNjL4E4Emmf2_KZhm81_w-hBsEPF3pygElUyLH3Z4gwY |
| CODEN | ITSMED |
| CitedBy_id | crossref_primary_10_1002_qre_3217 crossref_primary_10_1109_TSM_2025_3579031 crossref_primary_10_1016_j_enconman_2023_117341 crossref_primary_10_1016_j_measurement_2022_112166 crossref_primary_10_32604_cmc_2023_034005 crossref_primary_10_1364_AO_474272 crossref_primary_10_1016_j_cie_2021_107767 crossref_primary_10_1007_s10845_020_01687_7 crossref_primary_10_1007_s00226_021_01309_2 crossref_primary_10_1016_j_ress_2024_109966 crossref_primary_10_1109_TSM_2020_3022431 crossref_primary_10_1109_TSM_2021_3134625 crossref_primary_10_1109_TSM_2023_3262539 crossref_primary_10_1109_TIM_2022_3152243 crossref_primary_10_1016_j_aei_2023_102272 crossref_primary_10_1109_TSM_2023_3276816 crossref_primary_10_1016_j_engappai_2024_109161 crossref_primary_10_1088_1742_6596_2741_1_012019 crossref_primary_10_1109_TSM_2022_3159246 crossref_primary_10_1016_j_procs_2022_12_253 crossref_primary_10_1016_j_asoc_2025_113380 crossref_primary_10_1016_j_vlsi_2022_04_003 crossref_primary_10_1016_j_ijpe_2024_109275 crossref_primary_10_1016_j_cie_2021_107679 crossref_primary_10_1016_j_eswa_2021_114820 crossref_primary_10_1109_JETCAS_2025_3575272 crossref_primary_10_1016_j_compind_2023_103911 crossref_primary_10_1007_s10586_023_04115_6 crossref_primary_10_1115_1_4065276 crossref_primary_10_1109_ACCESS_2021_3068378 crossref_primary_10_3390_app12052721 crossref_primary_10_1109_ACCESS_2020_3029127 crossref_primary_10_1109_ACCESS_2024_3422616 crossref_primary_10_1016_j_engappai_2024_109070 crossref_primary_10_1109_ACCESS_2021_3106171 crossref_primary_10_1108_RIA_04_2023_0043 crossref_primary_10_1016_j_egyr_2021_11_021 crossref_primary_10_1016_j_jmsy_2021_05_008 |
| Cites_doi | 10.1145/1390156.1390294 10.1016/j.engappai.2012.03.016 10.1109/TSM.2014.2364237 10.1109/ICPHM.2016.7542865 10.1016/j.eswa.2006.07.011 10.1109/TII.2010.2092783 10.1080/07408170701592556 10.1016/j.ymssp.2017.06.022 10.1561/2200000006 10.1109/TII.2015.2481719 10.1016/j.neunet.2018.07.011 10.1109/TPAMI.2013.50 10.1080/07408170600733236 10.1016/j.jprocont.2008.04.008 10.1109/TASE.2013.2277603 10.1109/TPAMI.2012.277 10.1007/s00521-013-1442-7 10.1126/science.290.5500.2319 10.1109/TIM.2017.2698738 10.1109/TSM.2011.2154870 10.1109/TSM.2014.2388192 10.1007/s10845-009-0369-4 10.1126/science.290.5500.2323 10.1016/S0169-7439(00)00062-9 10.1016/j.eswa.2009.01.003 10.1080/00207543.2011.574502 10.1109/TSM.2008.2000269 10.1109/TSM.2015.2497264 10.1016/j.eswa.2006.04.014 10.1109/TKDE.2010.259 10.1016/j.eswa.2007.09.023 10.3233/IDA-2002-6504 10.1109/TNNLS.2014.2329097 10.1109/66.857947 10.1109/66.661284 10.1016/j.ins.2016.02.044 10.1016/j.ejor.2005.11.032 10.1006/jvci.1999.0413 10.1109/TSM.2015.2486383 10.1016/j.neucom.2015.07.130 10.1016/j.neucom.2012.11.008 10.1038/nature14539 10.1080/02772240600610822 10.1109/TIT.1962.1057692 10.1109/TSM.2012.2196058 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TSM.2019.2940334 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore: IEL CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1558-2345 |
| EndPage | 624 |
| ExternalDocumentID | 10_1109_TSM_2019_2940334 8830417 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 71777173 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for Central Universities |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c291t-ccead33e28bb5c42702c5e5ac967fd1d957dcd40c87d02326ce2fae5b4f74c703 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502719000042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0894-6507 |
| IngestDate | Sun Nov 30 05:06:47 EST 2025 Tue Nov 18 22:10:11 EST 2025 Sat Nov 29 05:13:41 EST 2025 Wed Aug 27 02:43:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-ccead33e28bb5c42702c5e5ac967fd1d957dcd40c87d02326ce2fae5b4f74c703 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3204-2486 |
| PQID | 2312017184 |
| PQPubID | 85442 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSM_2019_2940334 proquest_journals_2312017184 ieee_primary_8830417 crossref_primary_10_1109_TSM_2019_2940334 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on semiconductor manufacturing |
| PublicationTitleAbbrev | TSM |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 he (ref43) 2004 ref15 ref14 ref52 ref55 ref11 ref10 ref17 ref16 ref19 ref18 andrew (ref47) 2016 tenenbaum (ref44) 2000; 290 ref50 mesnil (ref40) 2011; 7 ref46 ref48 tan (ref23) 2015; 26 ref49 hu (ref51) 1962; 8 ref8 ref7 ref9 ref4 ref3 ref6 ref5 mohanaiah (ref53) 2013; 3 ref35 ref34 ref37 ref36 ref31 ref30 krizhevsky (ref29) 2012 ref32 ref2 ref1 ref39 belkin (ref45) 2006; 7 zhao (ref33) 2016 roweis (ref42) 2000; 290 glorot (ref41) 2011 vincent (ref38) 2010; 11 ref24 ref26 ref25 ref20 ref22 ref21 ref27 gonzalez (ref54) 2008 lecun (ref28) 2015; 521 |
| References_xml | – volume: 11 start-page: 3371 year: 2010 ident: ref38 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: ref37 doi: 10.1145/1390156.1390294 – ident: ref25 doi: 10.1016/j.engappai.2012.03.016 – volume: 7 start-page: 2399 year: 2006 ident: ref45 article-title: Manifold regularization: A geometric framework for learning form labeled and unlabeled examples publication-title: J Mach Learn Res – year: 2016 ident: ref47 publication-title: UFLDL Tutorial – ident: ref4 doi: 10.1109/TSM.2014.2364237 – ident: ref34 doi: 10.1109/ICPHM.2016.7542865 – ident: ref17 doi: 10.1016/j.eswa.2006.07.011 – ident: ref16 doi: 10.1109/TII.2010.2092783 – ident: ref9 doi: 10.1080/07408170701592556 – ident: ref36 doi: 10.1016/j.ymssp.2017.06.022 – ident: ref27 doi: 10.1561/2200000006 – ident: ref48 doi: 10.1145/1390156.1390294 – ident: ref22 doi: 10.1109/TII.2015.2481719 – ident: ref56 doi: 10.1016/j.neunet.2018.07.011 – ident: ref26 doi: 10.1109/TPAMI.2013.50 – ident: ref1 doi: 10.1109/TII.2015.2481719 – ident: ref49 doi: 10.1080/07408170600733236 – ident: ref15 doi: 10.1016/j.jprocont.2008.04.008 – ident: ref21 doi: 10.1109/TASE.2013.2277603 – year: 2008 ident: ref54 publication-title: Digital Image Processing – ident: ref39 doi: 10.1109/TPAMI.2012.277 – ident: ref19 doi: 10.1007/s00521-013-1442-7 – volume: 290 start-page: 2319 year: 2000 ident: ref44 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – ident: ref35 doi: 10.1109/TIM.2017.2698738 – ident: ref7 doi: 10.1109/TSM.2011.2154870 – ident: ref24 doi: 10.1109/TSM.2014.2388192 – ident: ref11 doi: 10.1007/s10845-009-0369-4 – start-page: 153 year: 2004 ident: ref43 article-title: Locality preserving projections publication-title: Proc Conf Adv Neural Inf Process Syst – volume: 290 start-page: 2323 year: 2000 ident: ref42 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – start-page: 513 year: 2011 ident: ref41 article-title: Domain adaptation for large-scale sentiment classification: A deep learning approach publication-title: Proc ICML – ident: ref57 doi: 10.1016/S0169-7439(00)00062-9 – ident: ref20 doi: 10.1016/j.eswa.2009.01.003 – ident: ref10 doi: 10.1080/00207543.2011.574502 – volume: 3 start-page: 290 year: 2013 ident: ref53 article-title: Image texture feature extraction using GLCM approach publication-title: Int J Sci Res Publ – ident: ref52 doi: 10.1109/TSM.2008.2000269 – ident: ref3 doi: 10.1109/TSM.2015.2497264 – ident: ref13 doi: 10.1016/j.eswa.2006.04.014 – ident: ref46 doi: 10.1109/TKDE.2010.259 – ident: ref8 doi: 10.1016/j.eswa.2007.09.023 – ident: ref55 doi: 10.3233/IDA-2002-6504 – year: 2016 ident: ref33 article-title: Deep learning and its applications to machine health monitoring: A survey publication-title: arXiv preprint arXiv 1612 07640 – volume: 26 start-page: 933 year: 2015 ident: ref23 article-title: Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2329097 – volume: 7 start-page: 1 year: 2011 ident: ref40 article-title: Unsupervised and transfer learning challenge: A deep learning approach publication-title: Proc JMLR Workshop Conf – ident: ref5 doi: 10.1109/66.857947 – ident: ref12 doi: 10.1109/66.661284 – ident: ref30 doi: 10.1016/j.ins.2016.02.044 – ident: ref6 doi: 10.1016/j.ejor.2005.11.032 – start-page: 1097 year: 2012 ident: ref29 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref50 doi: 10.1006/jvci.1999.0413 – ident: ref2 doi: 10.1109/TSM.2015.2486383 – ident: ref31 doi: 10.1016/j.neucom.2015.07.130 – ident: ref32 doi: 10.1016/j.neucom.2012.11.008 – volume: 521 start-page: 436 year: 2015 ident: ref28 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref14 doi: 10.1080/02772240600610822 – volume: 8 start-page: 179 year: 1962 ident: ref51 article-title: Visual pattern recognition by moment invariants publication-title: IRE Trans Inf Theory doi: 10.1109/TIT.1962.1057692 – ident: ref18 doi: 10.1109/TSM.2012.2196058 |
| SSID | ssj0014497 |
| Score | 2.4339924 |
| Snippet | In semiconductor manufacturing systems, defects on wafer maps tend to cluster and then these spatial patterns provide important process information for helping... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 613 |
| SubjectTerms | Deep learning defect recognition Defects Feature extraction Feature recognition Learning systems Machine learning manifold regularization Manifolds Manufacturing Manufacturing processes Noise reduction Pattern recognition Regularization stacked denoising autoencoder Wafer map |
| Title | Enhanced Stacked Denoising Autoencoder-Based Feature Learning for Recognition of Wafer Map Defects |
| URI | https://ieeexplore.ieee.org/document/8830417 https://www.proquest.com/docview/2312017184 |
| Volume | 32 |
| WOSCitedRecordID | wos000502719000042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2345 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014497 issn: 0894-6507 databaseCode: RIE dateStart: 19880101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BQmo5UL4qllLkQy-VGjZxnDg-UgrqBYQKFdwix560K1XJKpvw-xk7H2oFQuolysG2ojzb8-yZeQPwyZBRdB6XgJeRoAMKPXSS8CAMUSPyIg2LwhebkNfX2cODulmDL1MuDCL64DM8da_el29r07mrsnmW0eE7kuuwLqXsc7Umj4EQqlf1VCIg1iFHl2So5ne3Vy6GS51yJcI4Fv-YIF9T5dlG7K3L5bv_-64d2B5YJDvrYd-FNaz24M2YZLzag62_dAb3obiofntPPyNuScvWsm9Y1Qt3TcDOurZ2YpYWm-ArmTTLHCvsGmSD9OovRryW_RgDjeqK1SW71yU27EovaSQfEHIAPy8v7s6_B0NxhcBwFbWBMTSH4hh5VhSJES4tzSSYaKNSWdrIqkRaY0VoMmnJrnNXOazUmBSilMLQPvEeNqq6wkNgWVykhttIWZkKJM6gU0tMRodKc2N5OoP5-L9zMyiPuwIYf3J_AglVTgjlDqF8QGgGn6cey15145W2-w6Rqd0AxgyOR0jzYVmuciKz3AkEZeLo5V4f4K0bu082PIaNtunwI2yax3axak78jHsCGXDS1g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RqEQ5AAWqLq_60AsSYRPHefjIU6CyKwSLyi1y7AkgVQnK7vL7GTvJqgiExCXKwU6ifLbns2fmG4Dfmoyi9bh4vAgEbVDooqKIe76PCpHnsZ_nrthEMhymd3fyag72Z7kwiOiCz_DA3jpfvqn01B6V9dOUNt9B8gUWIiF40GRrzXwGQshG11MKj3hH0jklfdkf3QxsFJc84FL4YSheGSFXVeXNUuzsy9nK575sFZZbHskOG-C_wxyWa7DYpRmP12DpP6XBdchPywfn62fELmniGnaCZfVoDwrY4XRSWTlLg7V3REbNMMsLpzWyVnz1nhGzZdddqFFVsqpgf1WBNRuoJ3qSCwnZgNuz09HxudeWV_A0l8HE05pGURgiT_M80sImpukII6VlnBQmMDJKjDbC12liyLJzWzusUBjlokiEppXiB8yXVYk_gaVhHmtuAmmSWCCxBhUb4jLKl4prw-Me9Lv_nelWe9yWwPiXuT2ILzNCKLMIZS1CPdib9XhqdDc-aLtuEZm1a8HowXYHadZOzHFGdJZbiaBUbL7f6xcsno8Gl9nlxfDPFnyz72lSD7dhflJPcQe-6ufJ47jedaPvBTib1h0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Stacked+Denoising+Autoencoder-Based+Feature+Learning+for+Recognition+of+Wafer+Map+Defects&rft.jtitle=IEEE+transactions+on+semiconductor+manufacturing&rft.au=Yu%2C+Jianbo&rft.date=2019-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0894-6507&rft.eissn=1558-2345&rft.volume=32&rft.issue=4&rft.spage=613&rft_id=info:doi/10.1109%2FTSM.2019.2940334&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-6507&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-6507&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-6507&client=summon |