Robust Design Optimization of Permanent Magnet Linear Synchronous Motor Based on Quantified Constraint Satisfaction Problem

This study focuses on the robust design optimization of permanent magnet linear synchronous motors (PMLSM) considering the effect of uncertainties (noise factors) such as manufacturing errors, installation errors and working wears. A robust design optimization approach based on quantified constraint...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on energy conversion Vol. 35; no. 4; pp. 2013 - 2024
Main Authors: Dong, Fei, Zhao, Jiwen, Song, Juncai, Zhao, Jing, Yao, Zheng
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0885-8969, 1558-0059
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study focuses on the robust design optimization of permanent magnet linear synchronous motors (PMLSM) considering the effect of uncertainties (noise factors) such as manufacturing errors, installation errors and working wears. A robust design optimization approach based on quantified constraint satisfaction problem (QCSP) is proposed. It establishes a robust PMLSM thrust ripple model considering noise factors by QCSP, and obtains the optimal design parameters that have lower thrust ripple and smaller thrust ripple fluctuation within their error range by branch-and-prune algorithm. First, an analytical model of thrust ripple for PMLSM is established. Second, the robust QCSP model of thrust ripple is established by quantifier concept based on analytical model. It defines the design parameters and noise variables as existential and universal quantifiers, respectively, defines the variables of QCSP model as quantifier parameters that are composed of existential and universal quantifiers, then QCSP model are established by quantifier parameters. Third, the algorithm of branch-and-prune based on interval arithmetic is proposed to optimize the QCSP model. This approach is proven to be robust and superior compared with traditional deterministic approach and another robust approach. Finally, Finite element analysis and motor prototype experiments confirm the feasibility and validity of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-8969
1558-0059
DOI:10.1109/TEC.2020.2998447