Computational Resources of Miniature Robots: Classification and Implications
When it comes to describing robots, many roboticists choose to focus on the size, types of actuators, or other physical capabilities. As most areas of robotics deploy robots with large memory and processing power, the question "how computational resources limit what a robot can do" is ofte...
Saved in:
| Published in: | IEEE robotics and automation letters Vol. 4; no. 3; pp. 2722 - 2729 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | When it comes to describing robots, many roboticists choose to focus on the size, types of actuators, or other physical capabilities. As most areas of robotics deploy robots with large memory and processing power, the question "how computational resources limit what a robot can do" is often overlooked. However, the capabilities of many miniature robots are limited by significantly less memory and processing power. At present, there is no systematic approach to comparing and quantifying the computational resources as a whole and their implications. This letter proposes computational indices that systematically quantify computational resources-individually and as a whole. Then, by comparing 31 state-of-the-art miniature robots, a computational classification ranging from non-computing to minimally-constrained robots is introduced. Finally, the implications of computational constraints on robotic software are discussed. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2377-3766 2377-3766 |
| DOI: | 10.1109/LRA.2019.2917395 |