Diagnosis of Interturn Short-Circuit Faults in Permanent Magnet Synchronous Motors Based on Few-Shot Learning Under a Federated Learning Framework
A large amount of labeled data are important to enhance the performance of deep-learning-based methods in the area of fault diagnosis. Because it is difficult to obtain high-quality samples in real industrial applications, federated learning is an effective framework for solving the problem of spars...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial informatics Ročník 17; číslo 12; s. 8495 - 8504 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!